留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于高功率密度光束控制的光寻址光阀研制

陈一波 沈浩 段佳著 乔冉 曾建成 李大鹏 李玥颖 骆永全 王海峰 沈志学 赵祥杰 张大勇

陈一波, 沈浩, 段佳著, 等. 用于高功率密度光束控制的光寻址光阀研制[J]. 强激光与粒子束, 2023, 35: 041012. doi: 10.11884/HPLPB202335.220203
引用本文: 陈一波, 沈浩, 段佳著, 等. 用于高功率密度光束控制的光寻址光阀研制[J]. 强激光与粒子束, 2023, 35: 041012. doi: 10.11884/HPLPB202335.220203
Chen Yibo, Shen Hao, Duan Jiazhu, et al. Development of optically addressed liquid crystal light valve for high power density beam control[J]. High Power Laser and Particle Beams, 2023, 35: 041012. doi: 10.11884/HPLPB202335.220203
Citation: Chen Yibo, Shen Hao, Duan Jiazhu, et al. Development of optically addressed liquid crystal light valve for high power density beam control[J]. High Power Laser and Particle Beams, 2023, 35: 041012. doi: 10.11884/HPLPB202335.220203

用于高功率密度光束控制的光寻址光阀研制

doi: 10.11884/HPLPB202335.220203
详细信息
    作者简介:

    陈一波,ebby-chen@qq.com

    通讯作者:

    赵祥杰,zxjdouble@gmail.com

    张大勇,zdywxl874@sohu.com

  • 中图分类号: TN214

Development of optically addressed liquid crystal light valve for high power density beam control

  • 摘要: 为解决光寻址液晶光阀在高功率密度光束控制领域的应用限制,介绍一种可用于高功率密度激光系统的光寻址液晶光阀,该光阀开关比不低于140∶1,可在高于2300 W/cm2的连续激光系统中正常工作。同时,所研制的光阀可在高重频吉瓦(GW)级功率密度的fs脉冲激光系统中正常工作,在该系统最大功率密度激光作用下,光阀未见明显温度变化,该脉冲激光系统最大平均功率密度超过300 W/cm2
  • 图  1  光阀器件示意图

    Figure  1.  Schematic diagram of optically addressed liquid crystal light valve

    图  2  光寻址光阀的等效电路

    Figure  2.  Equivalent circuit of optically addressed liquid crystal light valve

    图  3  光照与未光照部分分压情况关系图

    Figure  3.  Voltage relationship between illuminated part and non-illuminated part

    图  4  工艺流程图

    Figure  4.  Process flow chart

    图  5  测试光路原理图

    Figure  5.  Schematic diagram of test optical path

    图  6  实验与模拟分压系数对比图

    Figure  6.  Comparison diagram of voltage coefficient between experiment and simulation

    图  7  光阀均匀性测试图

    Figure  7.  Uniformity test diagram of light valve

    图  8  光阀消光功能测试图

    Figure  8.  Extinction function test diagram of light valve

    图  9  高功率密度连续激光作用下的热成像图及温升曲线

    Figure  9.  Thermal imaging diagram and device temperature under the action of high power density continuous laser

    图  10  高功率密度激光作用引起温度变化对调制曲线的影响

    Figure  10.  Effect of temperature change on the modulation curve caused by the action of high power density laser

    图  11  高功率密度连续激光的图形化效果图

    Figure  11.  Graphical images of high power density CW laser

    图  12  不同波长下的吸收曲线

    Figure  12.  Absorption curves at different wavelengths

  • [1] Li Shiqiang, Xu Xuewu, Veetil R M, et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface[J]. Science, 2019, 364(6445): 1087-1090. doi: 10.1126/science.aaw6747
    [2] Zola R S, Bisoyi H K, Wang Hao, et al. Dynamic control of light direction enabled by stimuli-responsive liquid crystal gratings[J]. Advanced Materials, 2019, 31: 1806172. doi: 10.1002/adma.201806172
    [3] Komar A, Paniagua-Domínguez R, Miroshnichenko A, et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces[J]. ACS Photonics, 2018, 5(5): 1742-1748. doi: 10.1021/acsphotonics.7b01343
    [4] Brignon A, Bongrand I, Loiseaux B, et al. Signal-beam amplification by two-wave mixing in a liquid-crystal light valve[J]. Optics Letters, 1997, 22(24): 1855-1857. doi: 10.1364/OL.22.001855
    [5] Sanner N, Huot N, Audouard E, et al. Programmable focal spot shaping of amplified femtosecond laser pulses[J]. Optics Letters, 2005, 30(12): 1479-1481. doi: 10.1364/OL.30.001479
    [6] Huang Dajie, Fan Wei, Li Xuechun, et al. Beam shaping for 1 053-nm coherent light using optically addressed liquid crystal light valve[J]. Chinese Optics Letters, 2012, 10: S21406. doi: 10.3788/col201210.s21406
    [7] Heebner J, Borden M, Miller P, et al. A programmable beam shaping system for tailoring the profile of high fluence laser beams[C]//Proceedings of SPIE 7842, Laser-Induced Damage in Optical Materials: 2010. 2010.
    [8] Bortolozzo U, Residori S, Petrosyan A, et al. Pattern formation and direct measurement of the spatial resolution in a photorefractive liquid crystal light valve[J]. Optics Communications, 2006, 263(2): 317-321. doi: 10.1016/j.optcom.2006.01.038
    [9] Bortolozzo U, Residori S, Huignard J P. Self-pumped phase conjugation in a liquid crystal light valve with a tilted feedback mirror[J]. Optics Letters, 2007, 32(7): 829-831. doi: 10.1364/OL.32.000829
    [10] Bortolozzo U, Montina A, Arecchi F T, et al. Spatiotemporal pulses in a liquid crystal optical oscillator[J]. Physical Review Letters, 2007, 99: 023901. doi: 10.1103/PhysRevLett.99.023901
    [11] Bortolozzo U, Residori S, Huignard J P. Adaptive holography in liquid crystal light-valves[J]. Materials, 2012, 5(9): 1546-1559. doi: 10.3390/ma5091546
    [12] Peigné A, Bortolozzo U, Residori S, et al. Adaptive holographic interferometer at 1.55 μm based on optically addressed spatial light modulator[J]. Optics Letters, 2015, 40(23): 5482-5485. doi: 10.1364/OL.40.005482
    [13] Peigné A, Bortolozzo U, Residori S, et al. Adaptive interferometry for high-sensitivity optical fiber sensing[J]. Journal of Lightwave Technology, 2016, 34(19): 4603-4609. doi: 10.1109/JLT.2016.2552495
    [14] Bortolozzo U, Residori S, Huignard J P P. Slow and fast light: basic concepts and recent advancements based on nonlinear wave-mixing processes[J]. Laser & Photonics Reviews, 2010, 4(4): 483-498.
    [15] Lenzini F, Residori S, Arecchi F T, et al. Optical vortex interaction and generation via nonlinear wave mixing[J]. Physical Review A, 2011, 84: 061801. doi: 10.1103/PhysRevA.84.061801
    [16] Bortolozzo U, Residori S, Howell J C. Precision Doppler measurements with steep dispersion[J]. Optics Letters, 2013, 38(16): 3107-3110. doi: 10.1364/OL.38.003107
    [17] Yoo J H, Menor M G, Adams J J, et al. Laser damage mechanisms in conductive widegap semiconductor films[J]. Optics Express, 2016, 24(16): 17616-17634. doi: 10.1364/OE.24.017616
    [18] Yoo J H, Matthews M, Ramsey P, et al. Thermally ruggedized ITO transparent electrode films for high power optoelectronics[J]. Optics Express, 2017, 25(21): 25533-25545. doi: 10.1364/OE.25.025533
  • 加载中
图(12)
计量
  • 文章访问数:  646
  • HTML全文浏览量:  247
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-17
  • 修回日期:  2022-10-30
  • 录用日期:  2023-01-03
  • 网络出版日期:  2023-01-14
  • 刊出日期:  2023-03-30

目录

    /

    返回文章
    返回