留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于三角形插片结构的紧凑型波导双工器

王孟杰 王邦继 伍鹏程 倪泰来 刘庆想

王孟杰, 王邦继, 伍鹏程, 等. 基于三角形插片结构的紧凑型波导双工器[J]. 强激光与粒子束, 2023, 35: 033002. doi: 10.11884/HPLPB202335.220206
引用本文: 王孟杰, 王邦继, 伍鹏程, 等. 基于三角形插片结构的紧凑型波导双工器[J]. 强激光与粒子束, 2023, 35: 033002. doi: 10.11884/HPLPB202335.220206
Wang Mengjie, Wang Bangji, Wu Pengcheng, et al. Compact waveguide diplexer based on triangular insert structure[J]. High Power Laser and Particle Beams, 2023, 35: 033002. doi: 10.11884/HPLPB202335.220206
Citation: Wang Mengjie, Wang Bangji, Wu Pengcheng, et al. Compact waveguide diplexer based on triangular insert structure[J]. High Power Laser and Particle Beams, 2023, 35: 033002. doi: 10.11884/HPLPB202335.220206

基于三角形插片结构的紧凑型波导双工器

doi: 10.11884/HPLPB202335.220206
基金项目: 国家高技术研究发展计划项目; 四川省自然科学基金项目(2022NSFSC0567)
详细信息
    作者简介:

    王孟杰,wangmj_work@163.com

    通讯作者:

    王邦继,bangjiw@163.com

  • 中图分类号: TN814

Compact waveguide diplexer based on triangular insert structure

  • 摘要: 为满足高功率微波系统功率容量和紧凑化需求,提出了一种新型波导双工器。选用过模波导进行设计以提高功率容量,引入三角形金属插片结构谐振腔设计滤波器并在其间引入波导弯头以实现紧凑化。采用微波网络方法对滤波器进行理论分析并设计了两个工作在X波段的滤波器,选择终端短路法确定T型结尺寸并组成双工器。利用电磁仿真软件建模优化和仿真模拟,并对实物进行测试。仿真与测试结果表明,该波导双工器单通道工作时的功率容量分别大于0.11 GW和0.12 GW,两个通道的传输效率分别大于83.9%和82.4%,通道间隔离度大于20 dB。此外还可以根据需求增加滤波器阶数和引入更多的波导弯头以提高空间利用率。
  • 图  1  传统滤波器与新型滤波器对比

    Figure  1.  Comparison of conventional filter with rectangular insert and novel filter with triangular insert

    图  2  双工器结构图

    Figure  2.  Structure of the diplexer

    图  3  带通滤波器的等效阻抗匹配网络

    Figure  3.  Equivalent impedance matching network of a bandpass filter

    图  4  波导弯头的频率响应图

    Figure  4.  Frequency response of the waveguide bend

    图  5  lw变化时滤波器的频率响应

    Figure  5.  Frequency response of the filter when l and w change

    图  6  中心频率分别为9.15 GHz和9.75 GHz滤波器的频率响应图

    Figure  6.  Frequency responses of two filters with central frequencies of 9.15 GHz and 9.75 GHz

    图  7  双工器的仿真模型

    Figure  7.  Simulation model of the diplexer

    图  8  双工器仿真频率响应图

    Figure  8.  Simulated frequency response of the diplexer

    图  9  电场强度分布图

    Figure  9.  Electric field distribution of the diplexer

    图  10  双工器的实物照片

    Figure  10.  Photo of the diplexer

    图  11  双工器的测试照片

    Figure  11.  Photo of the diplexer test

    图  12  双工器的频率响应图

    Figure  12.  Frequency response of the diplexer

    表  1  优化参数值

    Table  1.   Optimized parameter values (mm)

    ${w_1}$${l_1}$${w_2}$${l_2}$${w_3}$${l_3}$${w_4}$${l_4}$${c_1}$${c_2}$${m_1}$${m_2}$$t$$h$
    7.287.847.427.766.807.617.427.5019.9821.8328.5027.901.006.60
    下载: 导出CSV

    表  2  双工器性能参数对比

    Table  2.   Comparison of diplexer performance

    referenceinsert
    structure
    return
    loss/dB
    insertion
    loss/dB
    [8]E-plane>15<2
    [9]H-plane>20<1
    [10]H-plane>19<0.8
    this worktriangle>17<0.84
    下载: 导出CSV
  • [1] Guo Letian, Huang Wenhua, Chang Chao, et al. Studies of a leaky-wave phased array antenna for high-power microwave applications[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 2366-2375. doi: 10.1109/TPS.2016.2601105
    [2] Liang Yuan, Zhang Jianqiong, Liu Qingxiang, et al. High-power radial-line helical subarray for high-frequency applications[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(8): 4034-4041. doi: 10.1109/TAP.2018.2840840
    [3] Yu Longzhou, Yuan Chengwei, He Juntao, et al. Beam steerable array antenna based on rectangular waveguide for high-power microwave applications[J]. IEEE Transactions on Plasma Science, 2019, 47(1): 535-541. doi: 10.1109/TPS.2018.2884290
    [4] 秦洪才, 袁成卫, 宁辉, 等. 高功率平板波导螺旋阵列天线设计[J]. 强激光与粒子束, 2021, 33:023002 doi: 10.11884/HPLPB202133.200252

    Qin Hongcai, Yuan Chengwei, Ning Hui, et al. Design of high power helical array antenna fed from planar waveguide[J]. High Power Laser and Particle Beams, 2021, 33: 023002 doi: 10.11884/HPLPB202133.200252
    [5] 李国林, 舒挺, 袁成卫, 等. 基于过模波导的高功率微波准相干功率合成器[J]. 强激光与粒子束, 2010, 22(11):2658-2662 doi: 10.3788/HPLPB20102211.2658

    Li Guolin, Shu Ting, Yuan Chengwei, et al. X-band quasi-coherent power combiner based on overmoded waveguides for high power microwave[J]. High Power Laser and Particle Beams, 2010, 22(11): 2658-2662 doi: 10.3788/HPLPB20102211.2658
    [6] 戚蓝月. Ka波段模式变换器与波导弯头的研究[D]. 成都: 电子科技大学, 2020: 8-10

    Qi Lanyue. Research on Ka-band mode converter and waveguide bend[D]. Chengdu: University of Electronic Science and Technology of China, 2020: 8-10
    [7] 杨同斌. 大功率太赫兹波传输器件研究[D]. 成都: 电子科技大学, 2021: 7-10

    Yang Tongbin. Research on electronic optics system and backward wave oscillator based on carbon nanotube cold cathode[D]. Chengdu: University of Electronic Science and Technology of China, 2021: 7-10
    [8] Tao Shen, Zaki K A, Dolan T G. Rectangular waveguide diplexers with a circular waveguide common port[J]. IEEE Transactions on Microwave Theory and Techniques, 2003, 51(2): 578-582. doi: 10.1109/TMTT.2002.807811
    [9] 张本全, 王锡良, 阮颖铮. Ku波段波导型双工器的研制[J]. 通信学报, 2004, 25(3):161-166 doi: 10.3321/j.issn:1000-436X.2004.03.021

    Zhang Benquan, Wang Xiliang, Ruan Yingzheng. Design of Ku-band waveguide diplexer[J]. Journal of China Institute of Communications, 2004, 25(3): 161-166 doi: 10.3321/j.issn:1000-436X.2004.03.021
    [10] 高晓艳, 段江年, 李鸿斌, 等. 一种Ka频段波导双工器设计与验证[C]//2019年全国天线年会. 2019: 2174-2177

    Gao Xiaoyan, Duan Jiangnian, Li Hongbin, et al. Design and test of a Ka band duplexer[C]//2019 National Conference on Antennas. 2019: 2174-2177
    [11] Zhang Yanqiu, Zhang Bo, Murong Haoding, et al. Design of 83GHz rectangular waveguide E-plane diaphragm bandpass filter[C]//13th UK-Europe-China Workshop on Millimetre-Waves and Terahertz Technologies (UCMMT). 2020: 1-3.
    [12] 张宇航. 双频高功率微波合成技术研究[D]. 成都: 电子科技大学, 2019: 14-18, 45-48

    Zhang Yuhang. Research on dual-frequency high power microwave synthesis technology[D]. Chengdu: University of Electronic Science and Technology of China, 2019: 14-18, 45-48
    [13] 赵玮琛, 张政权, 张健穹, 等. 侧馈式紧凑型扁波导螺旋阵列天线的设计[J]. 电子元件与材料, 2018, 37(6):78-82

    Zhao Weichen, Zhang Zhengquan, Zhang Jianqiong, et al. Design of helical array antenna fed from compact side-feed slab waveguide[J]. Electronic Components and Materials, 2018, 37(6): 78-82
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  572
  • HTML全文浏览量:  249
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-24
  • 修回日期:  2022-10-08
  • 录用日期:  2022-10-11
  • 网络出版日期:  2022-10-14
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回