留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超强激光与固体靶作用驱动量子电动力学级联和稠密正电子产生的研究进展

黄海荣 张亮琪 刘维媛 余同普 罗文

黄海荣, 张亮琪, 刘维媛, 等. 超强激光与固体靶作用驱动量子电动力学级联和稠密正电子产生的研究进展[J]. 强激光与粒子束, 2023, 35: 012004. doi: 10.11884/HPLPB202335.220208
引用本文: 黄海荣, 张亮琪, 刘维媛, 等. 超强激光与固体靶作用驱动量子电动力学级联和稠密正电子产生的研究进展[J]. 强激光与粒子束, 2023, 35: 012004. doi: 10.11884/HPLPB202335.220208
Huang Hairong, Zhang Liangqi, Liu Weiyuan, et al. Research progress of quantum electrodynamics cascade and dense positron production driven by interaction between extremely intense lasers and solid targets[J]. High Power Laser and Particle Beams, 2023, 35: 012004. doi: 10.11884/HPLPB202335.220208
Citation: Huang Hairong, Zhang Liangqi, Liu Weiyuan, et al. Research progress of quantum electrodynamics cascade and dense positron production driven by interaction between extremely intense lasers and solid targets[J]. High Power Laser and Particle Beams, 2023, 35: 012004. doi: 10.11884/HPLPB202335.220208

超强激光与固体靶作用驱动量子电动力学级联和稠密正电子产生的研究进展

doi: 10.11884/HPLPB202335.220208
基金项目: 国家自然科学基金项目(11675075)
详细信息
    作者简介:

    黄海荣,1135819453@qq.com

    通讯作者:

    罗 文,wenluo-ok@163.com

  • 中图分类号: O539; O413.2

Research progress of quantum electrodynamics cascade and dense positron production driven by interaction between extremely intense lasers and solid targets

  • 摘要: 极端超短超强激光脉冲的诞生将光与物质的相互作用推进到由辐射阻尼效应和量子电动力学(QED)效应占主导的高度非线性物理范畴。强场QED效应蕴含了丰富的物理过程包括辐射阻尼、高能伽马辐射、正负电子对产生、QED级联、真空极化等,是高能量密度物理和强场物理研究领域的前沿热点。QED级联是解释致密天体辐射和伽马射线暴形成的重要物理机制,其产生的稠密正电子源在高能物理、材料无损探测、癌症诊断等领域亦有重要的应用前景。介绍了QED级联过程及其理论模型,讨论了固体靶中的QED级联发展及其诱导的非线性物理效应,并回顾了固体靶中稠密正电子产生的主要研究成果。
  • 图  1  激光场中的QED级联示意图,箭头向右表示电子,箭头向左表示正电子,波浪线表示高能光子

    Figure  1.  Schematic diagram of a QED cascade in a super-strong laser field, double solid lines directed rightwards/leftwards represent electrons/positrons, and wavy lines represent high-energy photons

    图  2  在两束线偏振激光对向碰撞情况下,参数${\chi _{{\rm{e}},{\text{γ}} }}$的最大值与激光强度($\lambda = 1{\text{ μm}}$)的变化关系

    Figure  2.  Maximum value of parameter ${\chi _{{\rm{e}},{\text{γ}} }}$ as a function of laser intensity ($\lambda = 1{\text{ μm}}$) in the case of counter-propagating linearly polarized lasers

    图  3  在两束线偏振激光对向碰撞情况下,伽马光子发射和正负电子对产生的概率与激光强度的变化关系

    Figure  3.  Photon emission probability and positron-electron pair creation probability as a function of laser intensity ($\lambda = 1{\text{ μm}}$) in the case of counter-propagating linearly polarized lasers

    图  4  两束对向传播激光与薄固体靶相互作用下,在y=0处的正电子密度时空演化图[(a)和(c)]以及高能光子密度的时空演化图[(b)和(d)],其中图[(a)和(b)]和[(c)和(d)]分别显示了激光强度为4×1023和1.2×1024 W/cm2的情况[36]

    Figure  4.  Spatiotemporal evolutions of the positron (a) and (c) and high-energy photon (b) and (d) densities at y = 0 in the case of counter-propagating linearly polarized lasers interaction with solid targets, where sub figures (a) and (b) and (c) and (d) are shown for the cases with the laser intensities of 4×1023 and 1.2×1024 W/cm2, respectively [36]

  • [1] Blandford R D, Znajek R L. Electromagnetic extraction of energy from Kerr black holes[J]. Monthly Notices of the Royal Astronomical Society, 1997, 179(3): 433-456.
    [2] Michel F C. Theory of pulsar magnetospheres[J]. Reviews of Modern Physics, 1982, 54(1): 1-66. doi: 10.1103/RevModPhys.54.1
    [3] Piran T. The physics of gamma-ray bursts[J]. Reviews of Modern Physics, 2005, 76(4): 1143-1210. doi: 10.1103/RevModPhys.76.1143
    [4] Medin Z, Lai Dong. Pair cascades in the magnetospheres of strongly magnetized neutron stars[J]. Monthly Notices of the Royal Astronomical Society, 2010, 406(2): 1379-1404.
    [5] Danielson J R, Dubin D H E, Greaves R G, et al. Plasma and trap-based techniques for science with positrons[J]. Reviews of Modern Physics, 2015, 87(1): 247-306. doi: 10.1103/RevModPhys.87.247
    [6] Atcher R W, Friedman A M, Huizenga J R, et al. Manganese-52m, a new short-lived, generator-produced radionuclide: a potential tracer for positron tomography[J]. Journal of Nuclear Medicine, 1980, 21(6): 565-569.
    [7] Manus M P M, Hicks R J, Matthews J P, et al. Positron emission tomography is superior to computed tomography scanning for response-assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer[J]. Journal of Clinical Oncology, 2003, 21(7): 1285-1292. doi: 10.1200/JCO.2003.07.054
    [8] Gidley D W, Peng H G, Vallery R S. Positron annihilation as a method to characterize porous materials[J]. Annual Review of Materials Research, 2006, 36: 49-79. doi: 10.1146/annurev.matsci.36.111904.135144
    [9] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221. doi: 10.1016/0030-4018(85)90120-8
    [10] Yoon J W, Kim Y G, Choi I W, et al. Realization of laser intensity over 1023 W/cm2[J]. Optica, 2021, 8(5): 630-635. doi: 10.1364/OPTICA.420520
    [11] Eli. Extreme light infrastructure[EB/OL]. https://eli-laser.eu/.
    [12] Exawatt center for extreme light studies[EB/OL]. https://xcels.iapras.ru/news.html.
    [13] Papadopoulos D N, Ramirez P, Genevrier K, et al. High-contrast 10 fs OPCPA-based front end for multi-PW laser chains[J]. Optics Letters, 2017, 42(18): 3530-3533. doi: 10.1364/OL.42.003530
    [14] Li Shuai, Wang Cheng, Liu Yanqi, et al. High-order dispersion control of 10-petawatt Ti: sapphire laser facility[J]. Optics Express, 2017, 25(15): 17488-17498. doi: 10.1364/OE.25.017488
    [15] Ji Liangliang, Pukhov A, Kostyukov I Y, et al. Radiation-reaction trapping of electrons in extreme laser fields[J]. Physical Review Letters, 2014, 112: 145003. doi: 10.1103/PhysRevLett.112.145003
    [16] Gonoskov A, Bashinov A, Gonoskov I, et al. Anomalous radiative trapping in laser fields of extreme intensity[J]. Physical Review Letters, 2014, 113: 014801. doi: 10.1103/PhysRevLett.113.014801
    [17] Wistisen T N, Di Piazza A, Knudsen H V, et al. Experimental evidence of quantum radiation reaction in aligned crystals[J]. Nature Communications, 2018, 9: 795. doi: 10.1038/s41467-018-03165-4
    [18] Cole J M, Behm K T, Gerstmayr E, et al. Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam[J]. Physical Review X, 2018, 8: 011020.
    [19] Compton A H. A quantum theory of the scattering of X-rays by light elements[J]. Physical Review, 1923, 21(5): 483-502. doi: 10.1103/PhysRev.21.483
    [20] Seipt D, Kämpfer B. Nonlinear Compton scattering of ultrashort intense laser pulses[J]. Physical Review A, 2011, 83: 022101. doi: 10.1103/PhysRevA.83.022101
    [21] Breit G, Wheeler J A. Collision of two light quanta[J]. Physical Review, 1934, 46(12): 1087-1091. doi: 10.1103/PhysRev.46.1087
    [22] Burke D L, Field R C, Horton-Smith G, et al. Positron production in multiphoton light-by-light scattering[J]. Physical Review Letters, 1997, 79(9): 1626-1629. doi: 10.1103/PhysRevLett.79.1626
    [23] 吉亮亮, 耿学松, 伍艺通, 等. 超强激光驱动的辐射反作用力效应与极化粒子加速[J]. 物理学报, 2021, 70:085203 doi: 10.7498/aps.70.20210091

    Ji Liangliang, Geng Xuesong, Wu Yitong, et al. Laser-driven radiation-reaction effect and polarized particle acceleration[J]. Acta Physica Sinica, 2021, 70: 085203 doi: 10.7498/aps.70.20210091
    [24] Gonoskov A, Blackburn T G, Marklund M, et al. Charged particle motion and radiation in strong electromagnetic fields[J]. Reviews of Modern Physics, 2022, 94: 045001. doi: 10.1103/RevModPhys.94.045001
    [25] Akhiezer A I, Merenkov N P, Rekalo A P. Kinetic theory of electromagnetic showers in strong magnetic fields[J]. Yadernaya Fizika, 1995, 58(3): 491-500.
    [26] Mironov A A, Narozhny N B, Fedotov A M. Collapse and revival of electromagnetic cascades in focused intense laser pulses[J]. Physics Letters A, 2014, 378(44): 3254-3257. doi: 10.1016/j.physleta.2014.09.058
    [27] Mironov A A, Fedotov A M, Narozhnyi N B. Generation of quantum-electrodynamic cascades in oblique collisions of ultrarelativistic electrons with an intense laser field[J]. Quantum Electronics, 2016, 46(4): 305-309. doi: 10.1070/QEL16057
    [28] Bell A R, Kirk J G. Possibility of prolific pair production with high-power lasers[J]. Physical Review Letters, 2008, 101: 200403. doi: 10.1103/PhysRevLett.101.200403
    [29] Kirk J G, Bell A R, Arka I. Pair production in counter-propagating laser beams[J]. Plasma Physics and Controlled Fusion, 2009, 51: 085008. doi: 10.1088/0741-3335/51/8/085008
    [30] Fedotov A M, Elkina N V, Gelfer E G, et al. Radiation friction versus ponderomotive effect[J]. Physical Review A, 2014, 90: 053847. doi: 10.1103/PhysRevA.90.053847
    [31] Ritus V I. Quantum effects of the interaction of elementary particles with an intense electromagnetic field[J]. Journal of Soviet Laser Research, 1985, 6(5): 497-617. doi: 10.1007/BF01120220
    [32] Bashmakov V F, Nerush E N, Kostyukov I Y, et al. Effect of laser polarization on quantum electrodynamical cascading[J]. Physics of Plasmas, 2014, 21: 013105. doi: 10.1063/1.4861863
    [33] Grismayer T, Vranic M, Martins J L, et al. Seeded QED cascades in counter propagating laser pulses[J]. Physical Review E, 2017, 95: 023210. doi: 10.1103/PhysRevE.95.023210
    [34] Erber T. High-energy electromagnetic conversion processes in intense magnetic fields[J]. Reviews of Modern Physics, 1966, 38(4): 626-659. doi: 10.1103/RevModPhys.38.626
    [35] Grismayer T, Vranic M, Martins J L, et al. Laser absorption via quantum electrodynamics cascades in counter propagating laser pulses[J]. Physics of Plasmas, 2016, 23: 056706. doi: 10.1063/1.4950841
    [36] Luo Wen, Liu Weiyuan, Yuan Tao, et al. QED cascade saturation in extreme high fields[J]. Scientific Reports, 2018, 8: 8400. doi: 10.1038/s41598-018-26785-8
    [37] Slade-Lowther C, Del Sorbo D, Ridgers C P. Identifying the electron-positron cascade regimes in high-intensity laser-matter interactions[J]. New Journal of Physics, 2019, 21: 013028. doi: 10.1088/1367-2630/aafa39
    [38] Tang Suo, Bake M A, Wang Hongyu, et al. QED cascade induced by a high-energy γ photon in a strong laser field[J]. Physical Review A, 2014, 89: 022105. doi: 10.1103/PhysRevA.89.022105
    [39] Elkina N V, Fedotov A M, Kostyukov I Y, et al. QED cascades induced by circularly polarized laser fields[J]. Physical Review Accelerators and Beams, 2011, 14: 054401. doi: 10.1103/PhysRevSTAB.14.054401
    [40] Narozhny N B, Fedotov A M. Creation of electron-positron plasma with superstrong laser field[J]. The European Physical Journal Special Topics, 2014, 223(6): 1083-1092. doi: 10.1140/epjst/e2014-02159-1
    [41] Nerush E N, Kostyukov I Y, Fedotov A M, et al. Laser field absorption in self-generated electron-positron pair plasma[J]. Physical Review Letters, 2011, 106: 035001. doi: 10.1103/PhysRevLett.106.035001
    [42] Vranic M, Grismayer T, Fonseca R A, et al. Electron-positron cascades in multiple-laser optical traps[J]. Plasma Physics and Controlled Fusion, 2017, 59: 014040. doi: 10.1088/0741-3335/59/1/014040
    [43] Jirka M, Klimo O, Vranic M, et al. QED cascade with 10 PW-class lasers[J]. Scientific Reports, 2017, 7: 15302. doi: 10.1038/s41598-017-15747-1
    [44] Sampath A, Tamburini M. Towards realistic simulations of QED cascades: non-ideal laser and electron seeding effects[J]. Physics of Plasmas, 2018, 25: 083104. doi: 10.1063/1.5022640
    [45] Zhidkov A, Koga J, Sasaki A, et al. Radiation damping effects on the interaction of ultraintense laser pulses with an overdense plasma[J]. Physical Review Letters, 2002, 88: 185002. doi: 10.1103/PhysRevLett.88.185002
    [46] Ji Liangliang, Pukhov A, Nerush E N, et al. Near QED regime of laser interaction with overdense plasmas[J]. The European Physical Journal Special Topics, 2014, 223(6): 1069-1082. doi: 10.1140/epjst/e2014-02158-2
    [47] Baumann C, Pukhov A. Influence of ee+ creation on the radiative trapping in ultraintense fields of colliding laser pulses[J]. Physical Review E, 2016, 94: 063204. doi: 10.1103/PhysRevE.94.063204
    [48] Seipt D, Ridgers C P, Del Sorbo D, et al. Polarized QED cascades[J]. New Journal of Physics, 2021, 23: 053025. doi: 10.1088/1367-2630/abf584
    [49] Yu Jiye, Yuan Tao, Liu Weiyuan, et al. QED effects induced harmonics generation in extreme intense laser foil interaction[J]. Plasma Physics and Controlled Fusion, 2018, 60: 044011. doi: 10.1088/1361-6587/aaae35
    [50] Yuan Tao, Yu Jiye, Liu Weiyuan, et al. Spatiotemporal distributions of pair production and cascade in solid targets irradiated by ultra-relativistic lasers with different polarizations[J]. Plasma Physics and Controlled Fusion, 2018, 60: 065003. doi: 10.1088/1361-6587/aab3ba
    [51] Chen Hui, Wilks S C, Bonlie J D, et al. Relativistic positron creation using ultraintense short pulse lasers[J]. Physical Review Letters, 2009, 102: 105001. doi: 10.1103/PhysRevLett.102.105001
    [52] Chen Hui, Wilks S C, Meyerhofer D D, et al. Relativistic quasimonoenergetic positron jets from intense laser-solid interactions[J]. Physical Review Letters, 2010, 105: 015003. doi: 10.1103/PhysRevLett.105.015003
    [53] Chen Hui, Fiuza F, Link A, et al. Scaling the yield of laser-driven electron-positron jets to laboratory astrophysical applications[J]. Physical Review Letters, 2015, 114: 215001. doi: 10.1103/PhysRevLett.114.215001
    [54] Sarri G, Schumaker W, Di Piazza A, et al. Table-top laser-based source of femtosecond, collimated, ultrarelativistic positron beams[J]. Physical Review Letters, 2013, 110: 255002. doi: 10.1103/PhysRevLett.110.255002
    [55] Xu Tongjun, Shen Baifei, Xu Jiancai, et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons[J]. Physics of Plasmas, 2016, 23: 033109. doi: 10.1063/1.4943280
    [56] 闫永宏, 吴玉迟, 董克攻, 等. 激光固体靶相互作用产生正电子的模拟研究[J]. 强激光与粒子束, 2015, 27:112006 doi: 10.11884/HPLPB201527.112006

    Yan Yonghong, Wu Yuchi, Dong Kegong, et al. Simulation study of positron production from laser-solid interactions[J]. High Power Laser and Particle Beams, 2015, 27: 112006 doi: 10.11884/HPLPB201527.112006
    [57] Liang E P, Wilks S C, Tabak M. Pair production by ultraintense lasers[J]. Physical Review Letters, 1998, 81(22): 4887-4890. doi: 10.1103/PhysRevLett.81.4887
    [58] Shen Baifei, Meyer-Ter-Vehn J. Pair and γ-photon production from a thin foil confined by two laser pulses[J]. Physical Review E, 2001, 65: 016405. doi: 10.1103/PhysRevE.65.016405
    [59] Bethe H, Heitler W. On the stopping of fast particles and on the creation of positive electrons[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1934, 146(856): 83-112.
    [60] Heitler W. The quantum theory of radiation[M]. Oxford: Clarendon Press, 1954.
    [61] Ridgers C P, Brady C S, Duclous R, et al. Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids[J]. Physical Review Letters, 2012, 108: 165006. doi: 10.1103/PhysRevLett.108.165006
    [62] Gu Yanjun, Jirka M, Klimo O, et al. Gamma photons and electron-positron pairs from ultra-intense laser-matter interaction: a comparative study of proposed configurations[J]. Matter and Radiation at Extremes, 2019, 4: 064403. doi: 10.1063/1.5098978
    [63] Chang Hengxin, Qiao Bin, Xu Z, et al. Generation of overdense and high-energy electron-positron-pair plasmas by irradiation of a thin foil with two ultraintense lasers[J]. Physical Review E, 2015, 92: 053107. doi: 10.1103/PhysRevE.92.053107
    [64] Luo Wen, Zhu Yibo, Zhuo Hongbin, et al. Dense electron-positron plasmas and gamma-ray bursts generation by counter-propagating quantum electrodynamics-strong laser interaction with solid targets[J]. Physics of Plasmas, 2015, 22: 063112. doi: 10.1063/1.4923265
    [65] Zhu Xinglong, Yu Tongpu, Sheng Zhengmin, et al. Dense GeV electron-positron pairs generated by lasers in near-critical-density plasmas[J]. Nature Communications, 2016, 7: 13686. doi: 10.1038/ncomms13686
    [66] Zhu Xinglong, Chen Min, Yu Tongpu, et al. Collimated GeV attosecond electron-positron bunches from a plasma channel driven by 10 PW lasers[J]. Matter and Radiation at Extremes, 2019, 4: 014401. doi: 10.1063/1.5083914
    [67] Zhao Jie, Hu Yanting, Lu Yu, et al. All-optical quasi-monoenergetic GeV positron bunch generation by twisted laser fields[J]. Communications Physics, 2022, 5: 15. doi: 10.1038/s42005-021-00797-9
    [68] Chen Yueyue, He Peilun, Shaisultanov R, et al. Polarized positron beams via intense two-color laser pulses[J]. Physical Review Letters, 2019, 123: 174801. doi: 10.1103/PhysRevLett.123.174801
    [69] Wan Feng, Shaisultanov R, Li Yanfei, et al. Ultrarelativistic polarized positron jets via collision of electron and ultraintense laser beams[J]. Physics Letters B, 2020, 800: 135120. doi: 10.1016/j.physletb.2019.135120
    [70] Liu Weiyuan, Xue Kun, Wan Feng, et al. Trapping and acceleration of spin-polarized positrons from γ photon splitting in wakefields[J]. Physical Review Research, 2022, 4: L022028. doi: 10.1103/PhysRevResearch.4.L022028
    [71] Ridgers C P, Brady C S, Duclous R, et al. Dense electron-positron plasmas and bursts of gamma-rays from laser-generated quantum electrodynamic plasmas[J]. Physics of Plasmas, 2013, 20: 056701. doi: 10.1063/1.4801513
    [72] Mercuri-Baron A, Grech M, Niel F, et al. Impact of the laser spatio-temporal shape on Breit–Wheeler pair production[J]. New Journal of Physics, 2021, 23: 085006. doi: 10.1088/1367-2630/ac1975
    [73] Vincenti H, Monchocé S, Kahaly S, et al. Optical properties of relativistic plasma mirrors[J]. Nature Communications, 2014, 5: 3403. doi: 10.1038/ncomms4403
    [74] Yuan Tao, Chen Min, Yu Jiye, et al. Target transverse size and laser polarization effects on pair production during ultra-relativistic-intense laser interaction with solid targets[J]. Physics of Plasmas, 2017, 24: 063104. doi: 10.1063/1.4985306
    [75] Del Sorbo D, Blackman D R, Capdessus R, et al. Efficient ion acceleration and dense electron-positron plasma creation in ultra-high intensity laser-solid interactions[J]. New Journal of Physics, 2018, 20: 033014. doi: 10.1088/1367-2630/aaae61
    [76] Ji Liangliang, Snyder J C, Shen Baifei. Single-pulse laser-electron collision within a micro-channel plasma target[J]. Plasma Physics and Controlled Fusion, 2019, 61: 065019. doi: 10.1088/1361-6587/ab1692
    [77] Liu Jianxun, Ma Yanyun, Zhao Jun, et al. High-flux low-divergence positron beam generation from ultra-intense laser irradiated a tapered hollow target[J]. Physics of Plasmas, 2015, 22: 103102. doi: 10.1063/1.4932997
    [78] Kulcsár G, Almawlawi D, Budnik F W, et al. Intense picosecond X-ray pulses from laser plasmas by use of nanostructured “velvet” targets[J]. Physical Review Letters, 2000, 84(22): 5149-5152. doi: 10.1103/PhysRevLett.84.5149
    [79] Lécz Z, Andreev A. Attosecond bunches of gamma photons and positrons generated in nanostructure targets[J]. Physical Review E, 2019, 99: 013202. doi: 10.1103/PhysRevE.99.013202
    [80] Lécz Z, Andreev A. Bright synchrotron radiation from nano-forest targets[J]. Physics of Plasmas, 2017, 24: 033113. doi: 10.1063/1.4978573
    [81] Phuoc K T, Corde S, Thaury C, et al. All-optical Compton gamma-ray source[J]. Nature Photonics, 2012, 6(5): 308-311. doi: 10.1038/nphoton.2012.82
    [82] Zhang Liangqi, Wu Shaodong, Huang Hairong, et al. Brilliant attosecond γ-ray emission and high-yield positron production from intense laser-irradiated nano-micro array[J]. Physics of Plasmas, 2021, 28: 023110. doi: 10.1063/5.0030909
    [83] Li Hanzhen, Yu Tongpu, Liu Jinjin, et al. Ultra-bright γ-ray emission and dense positron production from two laser-driven colliding foils[J]. Scientific Reports, 2017, 7: 17312. doi: 10.1038/s41598-017-17605-6
    [84] Li Hanzhen, Yu Tongpu, Hu Lixiang, et al. Ultra-bright γ-ray flashes and dense attosecond positron bunches from two counter-propagating laser pulses irradiating a micro-wire target[J]. Optics Express, 2017, 25(18): 21583-21593. doi: 10.1364/OE.25.021583
    [85] Liu Weiyuan, Luo Wen, Yuan Tao, et al. Enhanced pair plasma generation in the relativistic transparency regime[J]. Physics of Plasmas, 2017, 24: 103130. doi: 10.1063/1.5001457
    [86] Liu Weiyuan, Luo Wen, Yuan Tao, et al. Dense pair plasma generation and its modulation dynamics in counter-propagating laser field[J]. Chinese Physics B, 2018, 27: 105202. doi: 10.1088/1674-1056/27/10/105202
    [87] Jirka M, Klimo O, Bulanov S V, et al. Electron dynamics and γ and ee+ production by colliding laser pulses[J]. Physical Review E, 2016, 93: 023207. doi: 10.1103/PhysRevE.93.023207
    [88] Liu Jianxun, Ma Yanyun, Yu Tongpu, et al. Dense pair plasma generation by two laser pulses colliding in a cylinder channel[J]. Chinese Physics B, 2017, 26: 035202. doi: 10.1088/1674-1056/26/3/035202
    [89] Zhang Peng, Ridgers C P, Thomas A G R. The effect of nonlinear quantum electrodynamics on relativistic transparency and laser absorption in ultra-relativistic plasmas[J]. New Journal of Physics, 2015, 17: 043051. doi: 10.1088/1367-2630/17/4/043051
    [90] Song Huaihang, Wang Weimin, Li Yanfei, et al. Spin and polarization effects on the nonlinear Breit–Wheeler pair production in laser-plasma interaction[J]. New Journal of Physics, 2021, 23: 075005. doi: 10.1088/1367-2630/ac0dec
    [91] Luo Wen, Wu Shaodong, Liu Weiyuan, et al. Enhanced electron-positron pair production by two obliquely incident lasers interacting with a solid target[J]. Plasma Physics and Controlled Fusion, 2018, 60: 095006. doi: 10.1088/1361-6587/aad211
    [92] Vshivkov V, Naumova N, Pegoraro F, et al. Nonlinear interaction of ultra-intense laser pulses with a thin foil[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 410(3): 493-498.
  • 加载中
图(4)
计量
  • 文章访问数:  724
  • HTML全文浏览量:  226
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-28
  • 修回日期:  2022-10-03
  • 网络出版日期:  2022-10-11
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回