留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温稠密参数下的双流不稳定性分析

梁泂航 吴栋

梁泂航, 吴栋. 温稠密参数下的双流不稳定性分析[J]. 强激光与粒子束, 2023, 35: 012011. doi: 10.11884/HPLPB202335.220209
引用本文: 梁泂航, 吴栋. 温稠密参数下的双流不稳定性分析[J]. 强激光与粒子束, 2023, 35: 012011. doi: 10.11884/HPLPB202335.220209
Liang Jionghang, Wu Dong. Analysis of two-stream instability in warm dense region[J]. High Power Laser and Particle Beams, 2023, 35: 012011. doi: 10.11884/HPLPB202335.220209
Citation: Liang Jionghang, Wu Dong. Analysis of two-stream instability in warm dense region[J]. High Power Laser and Particle Beams, 2023, 35: 012011. doi: 10.11884/HPLPB202335.220209

温稠密参数下的双流不稳定性分析

doi: 10.11884/HPLPB202335.220209
基金项目: 中国科学院战略性先导科技专项(XDA250050500);国家自然科学基金项目(12075204);上海市科技创新行动计划项目(22JC1401500)
详细信息
    作者简介:

    梁泂航,liangjionghang@sjtu.edu.cn

    通讯作者:

    吴 栋,dwu.phys@sjtu.edu.cn

  • 中图分类号: O534.2

Analysis of two-stream instability in warm dense region

  • 摘要: 温稠密物质状态是惯性约束聚变过程及天体演化过程中的重要物质发展阶段。随着密度的增加,量子效应逐渐显现并导致包括温稠密参数下集体激发行为与经典等离子体模型之间出现差异。密度泛函动理学方法是基于含时密度泛函理论建立的统计模型,并依据Wigner分布函数(相空间量子力学)发展的动理学输运方法,可以有效弥补经典等离子体理论对量子效应的忽略。基于密度泛函动理学方法,发现温稠密特征参数内费米狄拉克分布、交换关联效应、量子衍射效应等性质都对双流不稳定性起到抑制作用。密度泛函动理学方法有望为等离子体视角研究温稠密系统输运性质提供第一性的理论平台。
  • 图  1  包含物质和特征参数示例的密度-温度参数平面[34]

    Figure  1.  Density-temperature plane with examples of matters and characteristic parameters. ICF denotes inertial confinement fusion. MCF denotes magnetic confinement fusion. Metals refer to the electron gas in metals. The parameter interval of WDM partially overlaps with the parameter intervals of planets and stars

    图  2  不同条件下的增长率对比,其中密度单位为$ {\mathrm{c}\mathrm{m}}^{-3} $, y值的确定依据交换关联势的选取,$ {\mathit{\Theta}} =0.1 $,“classical”曲线代表零温下经典等离子体模型的不稳定性增长率

    Figure  2.  Growth rates of different conditions at different countering drift, with the density unit of $ {\mathrm{c}\mathrm{m}}^{-3} $. The values of y depends on the selection of xc potentials[21]$ {\mathit{\Theta}} =0.1 $. The ‘classical’ curves represent the instability rates of the classical plasma model at 0 T

    图  3  不同条件下的增长率对比,其中密度单位为$ {\mathrm{c}\mathrm{m}}^{-3} $$ {\mathit{\Theta}} =1 $, “classical”曲线代表零温下经典等离子体模型的不稳定性增长率

    Figure  3.  Growth rates of different conditions at different countering drift, with the density unit of $ {\mathrm{c}\mathrm{m}}^{-3} $, $ {\mathit{\Theta}} =1 $. The ‘classical’ curves represent the instability rates of the classical plasma model at 0 T

  • [1] Kritcher A L, Döppner T, Fortmann C, et al. In-flight measurements of capsule shell adiabats in laser-driven implosions[J]. Physical Review Letters, 2011, 107: 015002. doi: 10.1103/PhysRevLett.107.015002
    [2] Gomez M R, Slutz S A, Sefkow A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion[J]. Physical Review Letters, 2014, 113: 155003. doi: 10.1103/PhysRevLett.113.155003
    [3] Hausoel A, Karolak M, Şaşιoğlu E, et al. Local magnetic moments in iron and nickel at ambient and Earth’s core conditions[J]. Nature Communications, 2017, 8: 16062. doi: 10.1038/ncomms16062
    [4] Saumon D, Hubbard W B, Chabrier G, et al. The role of the molecular-metallic transition of hydrogen in the evolution of Jupiter, Saturn, and brown dwarfs[J]. Astrophysical Journal, 1992, 391(2): 827-831.
    [5] Roth M, Cowan T E, Key M H, et al. Fast ignition by intense laser-accelerated proton beams[J]. Physical Review Letters, 2001, 86(3): 436-439. doi: 10.1103/PhysRevLett.86.436
    [6] Lebedev S V, Ampleford D, Ciardi A, et al. Jet deflection via crosswinds: laboratory astrophysical studies[J]. The Astrophysical Journal, 2004, 616(2): 988-997. doi: 10.1086/423730
    [7] Drake R P. High-energy-density physics[M]. Cham: Springer, 2018.
    [8] Vladimirov S V, Tyshetskiy Y O. On description of a collisionless quantum plasma[J]. Physics-Uspekhi, 2011, 54(12): 1243-1256. doi: 10.3367/UFNe.0181.201112g.1313
    [9] Chen Liu. Waves and instabilities in plasmas[M]. Singapore: World Scientific, 1987.
    [10] Mangles S P D, Murphy C D, Najmudin Z, et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions[J]. Nature, 2004, 431(7008): 535-538. doi: 10.1038/nature02939
    [11] Nakar E. Short-hard gamma-ray bursts[J]. Physics Reports, 2007, 442(1/6): 166-236.
    [12] 康冬冬, 曾启昱, 张珅, 等. 激光产生温稠密物质的微观动力学过程及状态诊断[J]. 强激光与粒子束, 2020, 32:092006 doi: 10.11884/HPLPB202032.200121

    Kang Dongdong, Zeng Qiyu, Zhang Shen, et al. Dynamics and micro-structures in generation of warm dense matter using intense laser[J]. High Power Laser and Particle Beams, 2020, 32: 092006 doi: 10.11884/HPLPB202032.200121
    [13] Wu D, Yu W, Fritzsche S, et al. Particle-in-cell simulation method for macroscopic degenerate plasmas[J]. Physical Review E, 2020, 102: 033312.
    [14] Cai Hongbo, Yan Xinxin, Yao Peilin, et al. Hybrid fluid-particle modeling of shock-driven hydrodynamic instabilities in a plasma[J]. Matter and Radiation at Extremes, 2021, 6: 035901. doi: 10.1063/5.0042973
    [15] Zhang Shen, Wang Hongwei, Kang Wei, et al. Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas[J]. Physics of Plasmas, 2016, 23: 042707. doi: 10.1063/1.4947212
    [16] Dai Jiayu, Hou Yong, Yuan Jianmin. Unified first principles description from warm dense matter to ideal ionized gas plasma: electron-ion collisions induced friction[J]. Physical Review Letters, 2010, 104: 245001. doi: 10.1103/PhysRevLett.104.245001
    [17] Dai Jiayu, Kang Dongdong, Zhao Zengxiu, et al. Dynamic ionic clusters with flowing electron bubbles from warm to hot dense iron along the Hugoniot curve[J]. Physical Review Letters, 2012, 109: 175701. doi: 10.1103/PhysRevLett.109.175701
    [18] Liu Yun, Liu Xing, Zhang Shen, et al. Molecular dynamics investigation of the stopping power of warm dense hydrogen for electrons[J]. Physical Review E, 2021, 103: 063215. doi: 10.1103/PhysRevE.103.063215
    [19] Wigner E. On the quantum correction for thermodynamic equilibrium[J]. Physical Review, 1932, 40(5): 749-759. doi: 10.1103/PhysRev.40.749
    [20] Bohm D, Gross E P. Theory of plasma oscillations. A. Origin of medium-like behavior[J]. Physical Review, 1949, 75(12): 1851-1864. doi: 10.1103/PhysRev.75.1851
    [21] Pines D, Bohm D. A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions[J]. Physical Review, 1952, 85(2): 338-353. doi: 10.1103/PhysRev.85.338
    [22] Bohm D, Pines D. A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas[J]. Physical Review, 1953, 92(3): 609-625. doi: 10.1103/PhysRev.92.609
    [23] Klimontovich Y L, Silin V P. O Spektrakh sistem vzaimodeistvuyushchikh chastits[J]. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 1952, 23(2): 151-160.
    [24] Lindhard J. On the properties of a gas of charged particles[J]. Dan. Vid. Selsk Mat. -Fys. Medd., 1954, 28: 8.
    [25] Bonitz M. Quantum kinetic theory[M]. Cham: Springer, 2016.
    [26] Haas F, Manfredi G, Feix M. Multistream model for quantum plasmas[J]. Physical Review E, 2000, 62(2): 2763-2772. doi: 10.1103/PhysRevE.62.2763
    [27] Manfredi G, Haas F. Self-consistent fluid model for a quantum electron gas[J]. Physical Review B, 2001, 64: 075316. doi: 10.1103/PhysRevB.64.075316
    [28] Manfredi G. Density functional theory for collisionless plasmas–equivalence of fluid and kinetic approaches[J]. Journal of Plasma Physics, 2020, 86: 825860201. doi: 10.1017/S0022377820000240
    [29] Haas F. Kinetic theory derivation of exchange-correlation in quantum plasma hydrodynamics[J]. Plasma Physics and Controlled Fusion, 2019, 61: 044001. doi: 10.1088/1361-6587/aaffe1
    [30] Brodin G, Ekman R, Zamanian J. Do hydrodynamic models based on time-independent density functional theory misestimate exchange effects? Comparison with kinetic theory for electrostatic waves[J]. Physics of Plasmas, 2019, 26: 092113. doi: 10.1063/1.5104339
    [31] Liang Jionghang, Hu Tianxing, Wu D, et al. Kinetic studies of exchange-correlation effect on the collective excitations of warm dense plasmas[J]. Physical Review E, 2022, 105: 045206. doi: 10.1103/PhysRevE.105.045206
    [32] Son S. Two-stream instabilitie4, 378(34): 2505-2508.
    [33] Liang Jionghang, Hu Tianxing, Wu D, et al. Kinetic study of quantum two-stream instability by Wigner approach[J]. Physical Review E, 2021, 103: 033207. doi: 10.1103/PhysRevE.103.033207
    [34] Dornheim T, Groth S, Bonitz M. The uniform electron gas at warm dense matter conditions[J]. Physics Reports, 2018, 744: 1-86. doi: 10.1016/j.physrep.2018.04.001
    [35] Wigner E. On the interaction of electrons in metals[J]. Physical Review, 1934, 46(11): 1002-1011. doi: 10.1103/PhysRev.46.1002
    [36] van Leeuwen R. Mapping from densities to potentials in time-dependent density-functional theory[J]. Physical Review Letters, 1999, 82(19): 3863-3866. doi: 10.1103/PhysRevLett.82.3863
    [37] Ullrich C A. Time-dependent density-functional theory: concepts and applications[M]. Oxford: Oxford University Press, 2012.
    [38] Moyal J E. Quantum mechanics as a statistical theory[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1949, 45(1): 99-124. doi: 10.1017/S0305004100000487
    [39] Royer A. Wigner function as the expectation value of a parity operator[J]. Physical Review A, 1977, 15(2): 449-450. doi: 10.1103/PhysRevA.15.449
    [40] Hu Tianxing, Liang Jionghang, Sheng Zhengmao, et al. Kinetic investigations of nonlinear electrostatic excitations in quantum plasmas[J]. Physical Review E, 2022, 105: 065203. doi: 10.1103/PhysRevE.105.065203
    [41] Xu Buxing, Rajagopal A K. Current-density-functional theory for time-dependent systems[J]. Physical Review A, 1985, 31(4): 2682-2684. doi: 10.1103/PhysRevA.31.2682
    [42] Dhara A K, Ghosh S K. Density-functional theory for time-dependent systems[J]. Physical Review A, 1987, 35(1): 442-444. doi: 10.1103/PhysRevA.35.442
    [43] Ghosh S K, Dhara A K. Density-functional theory of many-electron systems subjected to time-dependent electric and magnetic fields[J]. Physical Review A, 1988, 38(3): 1149-1158. doi: 10.1103/PhysRevA.38.1149
  • 加载中
图(4)
计量
  • 文章访问数:  563
  • HTML全文浏览量:  188
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-28
  • 修回日期:  2022-12-06
  • 网络出版日期:  2022-12-10
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回