留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀薄空气、等离子体环境外系统电磁脉冲的数值模拟

孙会芳 张玲玉 董志伟 周海京

孙会芳, 张玲玉, 董志伟, 等. 稀薄空气、等离子体环境外系统电磁脉冲的数值模拟[J]. 强激光与粒子束, 2023, 35: 053005. doi: 10.11884/HPLPB202335.220211
引用本文: 孙会芳, 张玲玉, 董志伟, 等. 稀薄空气、等离子体环境外系统电磁脉冲的数值模拟[J]. 强激光与粒子束, 2023, 35: 053005. doi: 10.11884/HPLPB202335.220211
Sun Huifang, Zhang Lingyu, Dong Zhiwei, et al. Simulation study of external system generated electromagnetic pulse in low pressure air or plasma[J]. High Power Laser and Particle Beams, 2023, 35: 053005. doi: 10.11884/HPLPB202335.220211
Citation: Sun Huifang, Zhang Lingyu, Dong Zhiwei, et al. Simulation study of external system generated electromagnetic pulse in low pressure air or plasma[J]. High Power Laser and Particle Beams, 2023, 35: 053005. doi: 10.11884/HPLPB202335.220211

稀薄空气、等离子体环境外系统电磁脉冲的数值模拟

doi: 10.11884/HPLPB202335.220211
详细信息
    作者简介:

    孙会芳,sun_huifang@iapcm.ac.cn

  • 中图分类号: TN753.4

Simulation study of external system generated electromagnetic pulse in low pressure air or plasma

  • 摘要: 为研究大气环境对系统电磁脉冲(SGEMP )的影响,针对海拔50~100 km的X射线能量沉积区,分别应用3维PIC程序及3维PIC-MCC程序各自开展预电离等离子体和稀薄空气条件下外SGEMP的建模与模拟研究,针对3种不同的X射线注量(4×10−3 J/cm2、4×10−2 J/cm2、0.4 J/cm2),分别取对应两种不同海拔高度(70 km和80~90 km)的本底等离子体及海拔56 km的稀薄空气条件进行模拟计算,并和真空中的计算结果进行对比,得出预电离等离子体及稀薄空气对外SGEMP的影响规律:当X射线注量较低时,等离子体使得磁场增大,电场减小,而稀薄空气对外SGEMP效应影响不明显;随着X射线注量增大,空间电荷非线性效应越来越明显,等离子体及稀薄空气都使得电场、磁场同时增大,且稀薄空气的增大效应更显著。
  • 图  1  圆柱体外SGEMP模型

    Figure  1.  Model sketch of external SGEMP of cylinder

    图  2  不同X射线注量下24 ns时圆柱体外SGEMP的电子实空间分布

    Figure  2.  Distribution of electrons in different fluence of X-ray at 24 ns

    图  3  注量为0.4 J/cm2时的发射电流和导体吸收电流波形

    Figure  3.  Waveform of emitting current and absorbing current by cylinder in fluence of 0.4 J/cm2

    图  4  不同X射线注量下24 ns时发射面中线(y=0,x=10.2 cm)上的的电场分布

    Figure  4.  Distribution of electric field on central line of emitting surface (y=0,x=10.2 cm) in different fluence of X-ray (t=24 ns)

    图  5  不同X射线注量下24 ns时发射面边线(x=0, y=10.2 cm)上的磁场分布

    Figure  5.  Distribution of magnetic field on boundary line of emitting surface (x=0, y=10.2 cm) in different fluence of X-ray (t=24 ns)

    图  6  等离子体环境中外SGEMP物理模型

    Figure  6.  Physical model of external SGEMP in background plasma

    图  7  X射线注量为4×10−2 J/cm2 ,对应两种等离子体密度(1×108cm−3 、5×109 cm−3) 24 ns时,发射面中线(y=0,x=10.2 cm)上的电场分布和发射面边线(x=0,y=10.2 cm)上的磁场分布

    Figure  7.  Distribution of electric field on central line of emitting surface (y=0, x=10.2 cm) and magnetic field on boundary line of emitting surface (x=0, y=10.2 cm) with fluence of 4×10−2 J/cm2 respectively in different density plasma (1×108 cm−3, 5×109 cm−3) at 24 ns

    图  8  真空、低密度(1×108 cm−3)及高密度(5×109 cm−3)等离子体条件下的电磁场峰值随注量的变化

    Figure  8.  Peak electromagnetic field versus X-ray fluence respectively in vacuum, background plasma of low density (1×108 cm−3) or dense density (1×108 cm−3)

    图  9  注量为0.4 J/cm2,等离子体密度为5×109 cm−3 时的发射电流和导体吸收电流波形

    Figure  9.  Waveform of emitting current and absorbing current by cylinder in plasma density of 5×109 cm−3 with fluence of 0.4 J/cm2

    图  10  稀薄大气中外SGEMP的物理模型

    Figure  10.  Physical model of external SGEMP in low pressure air

    图  11  X射线注量为4×10−2 J/cm2时由表面光电流和次级电子共同激发的SGEMP 在50 ns时发射面中线(y=0,x=10.2 cm)上的的电场分布和发射面边线(x=0,y=10.2 cm)上的磁场分布

    Figure  11.  Distribution of electric field on central line of emitting surface (y=0, x=10.2 cm) and magnetic field on boundary line of emitting surface (x=0, y=10.2 cm) with fluence of 4×10−2 J/cm2 excitated by both photocurrent emitting from surface and secondary electrons at 50 ns

    图  12  空气光电流能谱和角分布

    Figure  12.  Energy spectra and angular distribution of photoelectrons produced in air

    图  13  X射线注量为4×10−2 J/cm2时由表面光电流、次级电子和空气光电流共同激发的SGEMP在50 ns时发射面中线(y=0,x=10.2 cm)上的的电场分布和发射面边线(x=0,y=10.2 cm)上的磁场分布

    Figure  13.  Distribution of electric field on central line of emitting surface (y=0, x=10.2 cm) and magnetic field on boundary line of emitting surface (x=0, y=10.2 cm) with fluence of 4×10−2 J/cm2 excitated by photocurrent emitting from both surface and air、secondary electrons together at 50 ns

    图  14  真空、空气电离及空气电离+空气光电流条件下的电磁场峰值随注量的变化

    Figure  14.  Peak electromagnetic field versus X-ray fluence respectively in vacuum, ionization or both ionization and air photoelectrons environment

  • [1] 王泰春, 贺云汉, 王玉芝. 电磁脉冲导论[M]. 北京: 国防工业出版社, 2011

    Wang Taichun, He Yunhan, Wang Yuzhi. Introduction to electromagnetic pulse[M]. Beijing: National Defense Industry Press, 2011
    [2] Woods A J, Hobbs W E, Wenaas E P. Air effects on the external SGEMP response of a cylinder[J]. IEEE Transactions on Nuclear Science, 1981, 28(6): 4467-4478. doi: 10.1109/TNS.1981.4335749
    [3] Woods A J, Treadaway M J, Nunan S, et al. Air-enhanced SGEMP response—an experimental and analytical investigation[J]. IEEE Transactions on Nuclear Science, 1982, 29(6): 1793-1797. doi: 10.1109/TNS.1982.4336449
    [4] Osborn D C, Stahl R H, Delmer T N. Large-area electron-beam experiments on space-charge neutralization in a cavity[J]. IEEE Transactions on Nuclear Science, 1976, 23(6): 1964-1968. doi: 10.1109/TNS.1976.4328607
    [5] Hinshelwood D, Swanekamp S B, Allen R J, et al. Electron-beam-gas interaction studies for code validation[C]//2015 Hardened Electronics and Radiation Technology Technical Interchange Meeting. 2015.
    [6] Zhang Hantian, Zhou Qianhong, Zhou Haijing, et al. Particle-in-cell simulations of low-pressure air plasma generated by pulsed X rays[J]. Journal of Applied Physics, 2021, 130: 173303. doi: 10.1063/5.0057841
    [7] Gilbert R M, Klebers J, Bromborsky A. Air pressure effects on internal SGEMP: a benchmark experiment for computer code validation[J]. IEEE Transactions on Nuclear Science, 1977, 24(6): 2389-2398. doi: 10.1109/TNS.1977.4329225
    [8] 孙会芳, 张芳, 董志伟. 圆柱体外SGEMP的三维数值模拟[J]. 计算物理, 2016, 33(4):434-440 doi: 10.3969/j.issn.1001-246X.2016.04.007

    Sun Huifang, Zhang Fang, Dong Zhiwei. 3D simulation of external SGEMP of cylinder[J]. Chinese Journal of Computational Physics, 2016, 33(4): 434-440 doi: 10.3969/j.issn.1001-246X.2016.04.007
    [9] 董志伟, 孙会芳, 杨郁林, 等. 磁绝缘线振荡器阴极释气电离粒子模拟[J]. 强激光与粒子束, 2016, 28:033023 doi: 10.11884/HPLPB201628.033023

    Dong Zhiwei, Sun Huifang, Yang Yulin, et al. Particle simulation technology of MILO cathode outgassing ionization[J]. High Power Laser and Particle Beams, 2016, 28: 033023 doi: 10.11884/HPLPB201628.033023
    [10] 张玲玉, 李瑞, 李刚, 等. JMCT光子-电子耦合输运模拟计算研究[J]. 强激光与粒子束, 2017, 29:126007 doi: 10.11884/HPLPB201729.170253

    Zhang Lingyu, Li Rui, Li Gang, et al. Simulation of JMCT photon-electron coupled transport[J]. High Power Laser and Particle Beams, 2017, 29: 126007 doi: 10.11884/HPLPB201729.170253
  • 加载中
图(14)
计量
  • 文章访问数:  539
  • HTML全文浏览量:  251
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-03
  • 修回日期:  2022-09-24
  • 录用日期:  2022-11-18
  • 网络出版日期:  2022-11-22
  • 刊出日期:  2023-04-07

目录

    /

    返回文章
    返回