留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲电场防治水生生物附着

刘楠 刘毅 李柳霞 丁悦 林福昌 许元钊 赵伟华

刘楠, 刘毅, 李柳霞, 等. 脉冲电场防治水生生物附着[J]. 强激光与粒子束, 2023, 35: 029002. doi: 10.11884/HPLPB202335.220212
引用本文: 刘楠, 刘毅, 李柳霞, 等. 脉冲电场防治水生生物附着[J]. 强激光与粒子束, 2023, 35: 029002. doi: 10.11884/HPLPB202335.220212
Liu Nan, Liu Yi, Li Liuxia, et al. Prevention and control of biological fouling in water by pulsed electric fields[J]. High Power Laser and Particle Beams, 2023, 35: 029002. doi: 10.11884/HPLPB202335.220212
Citation: Liu Nan, Liu Yi, Li Liuxia, et al. Prevention and control of biological fouling in water by pulsed electric fields[J]. High Power Laser and Particle Beams, 2023, 35: 029002. doi: 10.11884/HPLPB202335.220212

脉冲电场防治水生生物附着

doi: 10.11884/HPLPB202335.220212
基金项目: 国家自然基金青年科学基金项目(52107151)
详细信息
    作者简介:

    刘 楠,ln2016211694@163.com

    通讯作者:

    刘 毅,yiliu@hust.edu.cn

  • 中图分类号: TM89

Prevention and control of biological fouling in water by pulsed electric fields

  • 摘要: 为探究脉冲电场对防治水生生物附着效果的影响因素,确定有效防治附着生物所需的最低电场条件,搭建了脉冲电场试验平台,通过人工脉冲形成线产生近似方波的脉冲,统计不同条件下大型溞死亡率和形态结构发生的变化,通过函数拟合得到了脉冲电场诱导死亡率与电场强度、总等效处理时间、脉冲注入能量密度之间的函数关系,并以某干渠工程为例介绍了脉冲电场防治大型溞的参数选取原则和平台搭建方法。结果表明,脉冲电场对大型溞的处理效果与电场强度、总等效处理时间和脉冲注入能量密度都呈正相关关系。电场强度介于0.5~1.5 kV/cm之间时,电场强度每增加0.5 kV/cm,诱导死亡率增加35%左右。电场强度高于2.0 kV/cm、总等效处理时间大于900 μs或脉冲注入能量密度高于80 J/L时,脉冲电场都可以产生80%以上的诱导死亡率。
  • 图  1  脉冲电场防治生物附着试验平台

    Figure  1.  Test platform for pulsed electric field prevention and control of biofouling

    图  2  UL=27 kV,τ =38、51、77 μs时处理室两端电压的典型波形

    Figure  2.  Typical waveforms of the voltage applied on the electrodes of the treatment chamber when UL=27 kV, τ =38, 51, 77 μs

    图  3  实现93%以上诱导死亡率所需总等效处理时间随电场强度和脉冲宽度的变化规律

    Figure  3.  Total equivalent processing time required for over 93% mortality versus E and τ

    图  4  n=1,τ=38、51、77 μs时大型溞死亡率随电场强度的变化规律

    Figure  4.  Variation of mortality rate of Daphnia magna with E when n=1, τ=38, 51, 77 μs

    图  5  E=0.5 kV/cm,n=1,τ=38、51、77 μs时大型溞死亡率随总等效处理时间的变化规律

    Figure  5.  Variation of mortality rate of Daphnia magna with t when E =0.5 kV/cm, n=1, τ=38, 51, 77 μs

    图  6  W≤750 J/L时大型溞死亡率随脉冲注入能量密度的变化规律

    Figure  6.  Variation of mortality rate of Daphnia magna with W when W ranges from 0 to 750 J/L

    图  7  不同条件脉冲电场作用后大型溞的典型形态

    Figure  7.  Typical morphology of Daphnia magna treated by the pulsed electric field with different parameters

    图  8  大型溞死亡率随电场强度和总等效处理时间的变化规律及拟合曲面(R2adjusted=0.80)

    Figure  8.  Variation law and fitting surface (R2adjusted=0.80) of death rate of Daphnia magna with E and t

    图  9  大型溞死亡率随脉冲注入能量密度的变化规律及拟合曲线(R2 adjusted =0.84)

    Figure  9.  Variation law and fitting curve (R 2 adjusted=0.84) of death rate of Daphnia magna with W

    图  10  工程要求mc≥80%时脉冲电场参数的确定过程

    Figure  10.  Determination process of pulsed electric field parameters when induced mortality is required to be over 80%

    图  11  脉冲电场防治水生生物附着平台

    Figure  11.  Platform of pulsed electric field to prevent aquatic organisms from fouling

  • [1] Boltovskoy D, Xu Mengzhen, Nakano D. Impacts of Limnoperna fortunei on man-made structures and control strategies: general overview[M]//Boltovskoy D. Limnoperna Fortunei. Cham: Springer, 2015: 375-393.
    [2] Ludyanskiy M L, McDonald D, MacNeill D. Impact of the zebra mussel, a bivalve invader: Dreissena polymorpha is rapidly colonizing hard surfaces throughout waterways of the United States and Canada[J]. BioScience, 1993, 43(8): 533-544. doi: 10.2307/1311948
    [3] Bixler G D, Bhushan B. Biofouling: lessons from nature[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 370(1967): 2381-2417. doi: 10.1098/rsta.2011.0502
    [4] Legg M, Yücel M K, De Carellan I G, et al. Acoustic methods for biofouling control: a review[J]. Ocean Engineering, 2015, 103: 237-247. doi: 10.1016/j.oceaneng.2015.04.070
    [5] 田勇, 张爱静, 王树磊, 等. 输水工程中淡水壳菜生物污损影响及防治对策研究[J]. 水生态学杂志, 2020, 41(1):110-116 doi: 10.15928/j.1674-3075.2020.01.015

    Tian Yong, Zhang Aijing, Wang Shulei, et al. Impact and control measures for Limnoperna fortune (Golden Mussel) biofouling in water diversion projects[J]. Journal of Hydroecology, 2020, 41(1): 110-116 doi: 10.15928/j.1674-3075.2020.01.015
    [6] Katsuyama I, Kado R, Kominami H, et al. A screening method for test substances on attachment using larval barnacle, Balanus amphitrite, in the laboratory[J]. Marine Fouling, 1992, 9(1/2): 13-14. doi: 10.4282/sosj1979.9.13
    [7] Claudi R, de Oliveira M D. Alternative strategies for control of golden mussel (Limnoperna fortunei) in industrial facilities[M]//Boltovskoy D. Limnoperna Fortunei. Cham: Springer, 2015: 463-476.
    [8] Mansouri J, Harrisson S, Chen V. Strategies for controlling biofouling in membrane filtration systems: challenges and opportunities[J]. Journal of Materials Chemistry, 2010, 20(22): 4567-4586. doi: 10.1039/b926440j
    [9] Muschamp J W, Fong P P. Effects of the serotonin receptor ligand methiothepin on reproductive behavior of the freshwater snail Biomphalaria glabrata: reduction of egg laying and induction of penile erection[J]. Journal of Experimental Zoology, 2001, 289(3): 202-207. doi: 10.1002/1097-010X(20010215)289:3<202::AID-JEZ7>3.0.CO;2-B
    [10] 姚国友, 徐梦珍, 安雪晖, 等. 防附涂料的防附着与抗侵蚀性能试验[J]. 水力发电学报, 2016, 35(5):31-39 doi: 10.11660/slfdxb.20160504

    Yao Guoyou, Xu Mengzhen, An Xuehui, et al. Performance tests on anti-fouling and anti-corrosion of coating materials[J]. Journal of Hydroelectric Engineering, 2016, 35(5): 31-39 doi: 10.11660/slfdxb.20160504
    [11] Schoenbach K H, AldenR W, Fox T J. Biofouling prevention with pulsed electric fields[C]//Proceedings of 1996 International Power Modulator Symposium. 2002: 75-78.
    [12] Katsuyama I, Satuito C G, Maeda T, et al. The effect of DC-pulse electric stimulus on the swimming behavior of larvae of the freshwater mussel Limnoperna fortunei in flowing water within a pipe[J]. Sessile Organisms, 2005, 22(1): 1-5. doi: 10.4282/sosj.22.1
    [13] Aquatic Nuisance Apecies. Pulse-power: a possible alternative to chemicals for zebra mussel control; summary of 2000 field studies[R]. ERDC TN-ANSRP-03-2, 2003.
    [14] Amr A G, Schoenbach K H. Biofouling prevention with pulsed electric fields[J]. IEEE Transactions on Plasma Science, 2000, 28(1): 115-121. doi: 10.1109/27.842878
    [15] Luoma J A, Dean J C, Severson T J, et al. Use of alternating and pulsed direct current electrified fields for zebra mussel control[J]. Management of Biological Invasions, 2017, 8(3): 311-324. doi: 10.3391/mbi.2017.8.3.05
    [16] 宋大祥. 大型溞(Daphnia magna Straus)的初步培养研究[J]. 动物学报, 1962, 14(1):49-62

    Song Daxiang. Studies on the culturing of Daphnia magna straus (Crustacea, Cladocera)[J]. Acta Zoologica Sinica, 1962, 14(1): 49-62
    [17] 庄德辉, 梁彦龄, 孙美娟. 六六六对大型溞生态学的影响[J]. 水生生物学集刊, 1984, 8(3):259-269

    Zhuang Dehui, Liang Yanling, Sun Meijuan. Ecological effects of BHC on Daphnia magna straus[J]. Acta Hydrobiologica Sinica, 1984, 8(3): 259-269
    [18] 张若兵, 傅贤, 寇梅如. 高压脉冲电场对小球藻破碎效果的影响[J]. 高电压技术, 2016, 42(8):2668-2674 doi: 10.13336/j.1003-6520.hve.20160812039

    Zhang Ruobing, Fu Xian, Kou Meiru. Influence of high voltage pulsed electric fields on disrupture of chlorella[J]. High Voltage Engineering, 2016, 42(8): 2668-2674 doi: 10.13336/j.1003-6520.hve.20160812039
    [19] Tsong T Y. Electroporation of cell membranes[J]. Biophysical Journal, 1991, 60(2): 297-306. doi: 10.1016/S0006-3495(91)82054-9
    [20] Zimmermann U. Electric field-mediated fusion and related electrical phenomena[J]. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1982, 694(3): 227-277. doi: 10.1016/0304-4157(82)90007-7
    [21] Kotnik T, Kramar P, Pucihar G, et al. Cell membrane electroporation—Part 1: the phenomenon[J]. IEEE Electrical Insulation Magazine, 2012, 28(5): 14-23. doi: 10.1109/MEI.2012.6268438
    [22] Haberl S, Miklavcic D, Sersa G, et al. Cell membrane electroporation—Part 2: the applications[J]. IEEE Electrical Insulation Magazine, 2013, 29(1): 29-37. doi: 10.1109/MEI.2013.6410537
    [23] Jeyamkondan S, Jayas D S, Holley R A. Pulsed electric field processing of foods: a review[J]. Journal of Food Protection, 1999, 62(9): 1088-1096. doi: 10.4315/0362-028X-62.9.1088
    [24] Sale A J H, Hamilton W A. Effects of high electric fields on microorganisms: I. Killing of bacteria and yeasts[J]. Biochimica et Biophysica Acta (BBA) - General Subjects, 1967, 148(3): 781-788. doi: 10.1016/0304-4165(67)90052-9
    [25] Krassowska W, Filev P D. Modeling electroporation in a single cell[J]. Biophysical Journal, 2007, 92(2): 404-417. doi: 10.1529/biophysj.106.094235
  • 加载中
图(11)
计量
  • 文章访问数:  516
  • HTML全文浏览量:  213
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-30
  • 修回日期:  2022-10-11
  • 录用日期:  2022-10-14
  • 网络出版日期:  2022-10-18
  • 刊出日期:  2023-01-14

目录

    /

    返回文章
    返回