留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固体绝缘子的真空沿面闪络研究

何友辉 陈洪斌 李飞 宋法伦

何友辉, 陈洪斌, 李飞, 等. 固体绝缘子的真空沿面闪络研究[J]. 强激光与粒子束, 2023, 35: 035004. doi: 10.11884/HPLPB202335.220214
引用本文: 何友辉, 陈洪斌, 李飞, 等. 固体绝缘子的真空沿面闪络研究[J]. 强激光与粒子束, 2023, 35: 035004. doi: 10.11884/HPLPB202335.220214
He Youhui, Chen Hongbin, Li Fei, et al. Review of surface flashover and surface charge behavior of vacuum insulators[J]. High Power Laser and Particle Beams, 2023, 35: 035004. doi: 10.11884/HPLPB202335.220214
Citation: He Youhui, Chen Hongbin, Li Fei, et al. Review of surface flashover and surface charge behavior of vacuum insulators[J]. High Power Laser and Particle Beams, 2023, 35: 035004. doi: 10.11884/HPLPB202335.220214

固体绝缘子的真空沿面闪络研究

doi: 10.11884/HPLPB202335.220214
基金项目: 国家自然科学基金项目(51907182)
详细信息
    作者简介:

    何友辉,heyouhui20@gscaep.ac.cn

    通讯作者:

    宋法伦,songfalun@caep.cn

  • 中图分类号: TM214

Review of surface flashover and surface charge behavior of vacuum insulators

  • 摘要: 针对在高压设备中因沿面闪络现象而发生绝缘失效的问题,对沿面闪络现象中的基础特性测量手段、影响因素及其发生机制等关键问题进行了归纳总结,介绍了目前关于沿面闪络观测手段及其影响因素研究的主要进展,并对沿面闪络过程的具体机制以及表面电荷在沿面闪络过程中扮演的作用进行讨论。其中,外在因素、电极-介质界面层因素以及真空-介质表面层因素等三大类因素在影响沿面闪络的同时也对表面电荷积聚消散造成影响,其具体机制各不相同。在沿面闪络的主流机制中,SEEA理论较完整地阐述了沿面闪络的起始过程,ETPR理论则对沿面闪络的发展过程有着更好的解释。此外,表面电荷为沿面闪络发生提供了必要电荷,其积累与消散行为对沿面闪络发展起着决定性作用。开发能够实现低二次电子发射系数与高表面电导的绝缘材料及表面改性技术将是该领域未来重点研究方向。
  • 图  1  不同处理条件下稳态发光特性测量装置及结果

    Figure  1.  Steady-state luminous characteristics measurement device and result under different treatment conditions

    图  2  二次电子发射系数测试装置以及结果

    Figure  2.  Secondary electron emission coefficient test device and results

    图  3  气体压强与距离乘积对氧化铝陶瓷闪络电压的影响[1]

    Figure  3.  Relationship of Al2O3 flashover voltage and the production of pressure and distance[1]

    图  4  不同材料在不同电压波形下的闪络[12-14]

    Figure  4.  Flashover voltages of materials under different voltage wave-forms[12-14]

    图  5  不同温度下的圆柱形聚乙烯绝缘子闪络电压[15]

    Figure  5.  Cylinder polystyrene flashover voltages on different temperature[15]

    图  6  阴极三结合点处等位线分布

    Figure  6.  Distribution of equipotential line in CTJ

    图  7  不同绝缘子平均表面粗糙度与闪络电压关系[24]

    Figure  7.  Relationship between average surface roughness of different insulators and the flashover voltage [24]

    图  8  常见绝缘子表面形状

    Figure  8.  Common insulator surface shapes

    图  9  圆柱形绝缘子倾角与闪络电压关系[27]

    Figure  9.  Cylindrical insulator inclination angle vs flashover voltage [27]

    图  10  SEEA模型中沿面闪络发展过程示意图[33]

    Figure  10.  Schematic diagram of the development process of flashovers along the surface in the SEEA model[33]

    图  11  电子极化松弛模型示意图[34]

    Figure  11.  Schematic of an electron polarization relaxation model34]

    图  12  不同预击穿时间延迟下的绝缘子闪络电场[33]

    Figure  12.  Insulator flashover electric field with different pre-breakdown time delays[33]

    图  13  脉冲电压下表面电荷对闪络电压的影响

    Figure  13.  Effect of surface charge on the flashover voltage under the pulse voltage

    图  14  直流电压下表面电荷极性对闪络电压的影响[41]

    Figure  14.  Influence of surface charge polarity on flashover voltage at DC voltage[41]

    图  15  表面电荷的三种积聚途径

    Figure  15.  Three ways of surface charges accumulation

    表  1  不同沿面闪络理论的实验证据[36]

    Table  1.   Experimental evidence for different along-surface flashover theory[36]

    theorysupportagainst
    SEEAeffects of nanosecond pulse flashover, desorption gas, magnetic field and
    secondary electron emission coefficient on surface flashover
    DC flashover has a delay
    of several nanoseconds
    ETPRDC flashover, desorption gas, effect of mechanical properties of insulators and
    flashover caused by charged particle bombardment
    flashover phenomenon at
    nanosecond pulse voltage
    下载: 导出CSV
  • [1] Zhang Guanjun, Su Guoqing, Song Baipeng, et al. Pulsed flashover across a solid dielectric in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(6): 2321-2339. doi: 10.1109/TDEI.2018.007133
    [2] 林川杰, 高文虹, 李琦, 等. 环氧树脂工艺参数与交流沿面闪络的关联性[J]. 高电压技术, 2019, 45(9):2732-2739

    Lin Chuanjie, Gao Wenhong, Li Qi, et al. Correlation between epoxy resin process parameters and AC flashover[J]. High Voltage Engineering, 2019, 45(9): 2732-2739
    [3] 崔阳, 宋佰鹏, 杨勇, 等. 航天器表面材料二次电子发射特性研究[J]. 真空科学与技术学报, 2021, 41(8):770-774

    Cui Yang, Song Baipeng, Yang Yong, et al. Study on characteristics of secondary electron emission for spacecraft surface materials[J]. Chinese Journal of Vacuum Science and Technology, 2021, 41(8): 770-774
    [4] 徐洋, 刘卫东, 高文胜. 使用粉尘图法研究交流电压下典型GIS绝缘表面缺陷的电场电荷分布[J]. 电瓷避雷器, 2020(5):211-218

    Xu Yang, Liu Weidong, Gao Wensheng. Research on distribution of the electric field and surface charge of typical defects on GIS insulators with dust figure[J]. Insulators and Surge Arresters, 2020(5): 211-218
    [5] 徐洋, 刘卫东, 高文胜. 使用粉尘图法测量交流电压下GIS绝缘表面电场电荷分布的影响因素研究[J]. 电瓷避雷器, 2020(3):205-212

    Xu Yang, Liu Weidong, Gao Wensheng. Research on the influence factor of the dust figure used for the measurement of the surface charge and electric field distribution of GIS insulator under AC voltage[J]. Insulators and Surge Arresters, 2020(3): 205-212
    [6] 张博雅, 王强, 祁喆, 等. 直流电压下聚合物表面电荷测量方法及积聚特性[J]. 中国电机工程学报, 2016, 36(24):6664-6674 doi: 10.13334/j.0258-8013.pcsee.161815

    Zhang Boya, Wang Qiang, Qi Zhe, et al. Measurement method and accumulation characteristics of surface charge distribution on polymeric material under DC voltage[J]. Proceedings of the CSEE, 2016, 36(24): 6664-6674 doi: 10.13334/j.0258-8013.pcsee.161815
    [7] Lee S J, Hong A, Kim I H, et al. Surface potential measurements of a polymer film following primary ion gun irradiation for ToF-SIMS analysis of insulator using a Kelvin probe and the observation of effects from the vacuum gauge[J]. Applied Surface Science, 2020, 525: 146561. doi: 10.1016/j.apsusc.2020.146561
    [8] Zhang Bo, Xue Jianyi, Chen Xingyu, et al. Review of surface transient charge measurement on solid insulating materials via the Pockels technique[J]. High Voltage, 2021, 6(4): 608-624. doi: 10.1049/hve2.12073
    [9] Miller H C. Flashover of insulators in vacuum: the last twenty years[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(6): 3641-3657. doi: 10.1109/TDEI.2015.004702
    [10] 高巍, 孙广生, 严萍, 等. 影响真空中绝缘体沿面闪络特性因素研究综述[J]. 高压电器, 2005, 41(6):456-460,465

    Gao Wei, Sun Guangsheng, Yan Ping, et al. Summary of influence factors about insulator surface flashover in vacuum[J]. High Voltage Apparatus, 2005, 41(6): 456-460,465
    [11] Pillai A S, Hackam R. Surface flashover of solid insulators in atmospheric air and in vacuum[J]. Journal of Applied Physics, 1985, 58(1): 146-153. doi: 10.1063/1.335700
    [12] Kuffel E, Grzybowski S, Ugarte R B. Flashover across polyethylene and tetrafluoroethylene surfaces in vacuum under direct, alternating and surge voltages of various waveshapes[J]. Journal of Physics D: Applied Physics, 1972, 5(3): 575-579. doi: 10.1088/0022-3727/5/3/318
    [13] Sudarshan T S, Cross J D. The effect of chromium oxide coatings on surface flashover of alumina spacers in vacuum[J]. IEEE Transactions on Electrical Insulation, 1976, EI-11(1): 32-35. doi: 10.1109/TEI.1976.297942
    [14] Cross J D, Sudarshan T S. The effect of cuprous oxide coatings on surface flashover of dielectric spacers in vacuum[J]. IEEE Transactions on Electrical Insulation, 1974, EI-9(4): 146-150. doi: 10.1109/TEI.1974.299325
    [15] Ohki Y, Yahagi K. Temperature dependence of surface flashover voltage of polyethylene in vacuum[J]. Journal of Applied Physics, 1975, 46(8): 3695-3696. doi: 10.1063/1.322260
    [16] 张振军, 郑晓泉, 吴文斌, 等. 不同温度下聚酰亚胺真空直流沿面闪络特性[J]. 西安交通大学学报, 2014, 48(4):47-51

    Zhang Zhenjun, Zheng Xiaoquan, Wu Wenbin, et al. DC surface flashover characteristics of polyimide in vacuum at different temperatures[J]. Journal of Xi’an Jiaotong University, 2014, 48(4): 47-51
    [17] 屠幼萍, 谭荣, 张贵峰, 等. 聚酰亚胺在低温真空环境下的直流电气特性[J]. 中国电机工程学报, 2013, 33(4):194-200

    Tu Youping, Tan Rong, Zhang Guifeng, et al. DC electrical characteristics of polyimide at cryogenic temperature in vacuum[J]. Proceedings of the CSEE, 2013, 33(4): 194-200
    [18] Suzuki T. Flashover voltage over ceramics in high vacuum[J]. Japanese Journal of Applied Physics, 1974, 13(10): 1541-1546. doi: 10.1143/JJAP.13.1541
    [19] Akahane M, Kanda K, Yahagi K. Effect of dielectric constant on surface discharge of polymer insulators in vacuum[J]. Journal of Applied Physics, 1973, 44: 2927. doi: 10.1063/1.1662683
    [20] Kofoid M J. Phenomena at the metal-dielectric junctions of high-voltage insulators in vacuum and magnetic field[J]. Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, 1960, 79(3): 991-999. doi: 10.1109/AIEEPAS.1960.4500898
    [21] Sudarshan T S. Electrode architecture related to surface flashover of solid dielectrics in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1997, 4(4): 374-381. doi: 10.1109/94.625351
    [22] Zhang Guanjun, Yan Zewu, Liu Yi, et al. Influence of electrode contact on luminescence from alumina ceramic surface under ac electric field in vacuum[J]. Applied Physics Letters, 2001, 78(5): 625-627. doi: 10.1063/1.1344573
    [23] Zhang Guanjun, Zhao Wenbin, Yan Zhang, et al. Optical investigation of AC preflashover of alumina ceramic in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(3): 498-505.
    [24] Yamamoto O, Takuma T, Fukuda M, et al. Improving withstand voltage by roughening the surface of an insulating spacer used in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2003, 10(4): 550-556. doi: 10.1109/TDEI.2003.1219636
    [25] 郎艳, 王艺博, 苏国强, 等, 表面粗糙度对有机玻璃材料真空沿面闪络特性的影响[J]. 高电压技术, 2015, 41(2): 474-478

    Lang Yan, Wang Yibo, Su Guoqiang, et al. Influence of surface roughness on vacuum flashover characteristics of PMMA[J]. High Voltage Engineering, 2015, 41(2): 474-478
    [26] Guo Baohong, Sun Guangyu, Zhang Shu, et al. Mechanism of vacuum flashover on surface roughness[J]. Journal of Physics D: Applied Physics, 2019, 52: 215301. doi: 10.1088/1361-6463/ab05a0
    [27] Milton O. Pulsed flashover of insulators in vacuum[J]. IEEE Transactions on Electrical Insulation, 1972, EI-7(1): 9-15. doi: 10.1109/TEI.1972.299183
    [28] Pillai A S, Hackam R. Surface flashover of conical insulators in vacuum[J]. Journal of Applied Physics, 1984, 56(5): 1374-1381. doi: 10.1063/1.334128
    [29] Fukuda H, Yamano Y, Kobayashi S, et al. Relationship between vacuum surface flashover and charging characteristics for alumina ceramics of lowered resistivity[C]//2013 2nd International Conference on Electric Power Equipment-Switching Technology. 2013: 1-4.
    [30] 吕金壮. 氧化铝陶瓷的陷阱分布对其真空中沿面闪络特性的影响[D]. 北京: 华北电力大学(北京), 2003: 66-74

    Lv Jinzhuang. The influence of trap distribution of alumina ceramics on the surface flashover performance in vacuum[D]. Beijing: North China Electric Power University (Beijing), 2003: 66-74
    [31] Li Chengrong, Ding Lijian, Lv Jinzhuang, et al. The relation of trap distribution of alumina with surface flashover performance in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, 13(1): 79-84. doi: 10.1109/TDEI.2006.1593404
    [32] Li Shengtao, Huang Qifeng, Sun Jian, et al. Effect of traps on surface flashover of XLPE in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(3): 964-970. doi: 10.1109/TDEI.2010.5492273
    [33] Anderson R A, Brainard J P. Mechanism of pulsed surface flashover involving electron-stimulated desorption[J]. Journal of Applied Physics, 1980, 51(3): 1414-1421. doi: 10.1063/1.327839
    [34] Blaise G, Le Gressus C. Charging and flashover induced by surface polarization relaxation process[J]. Journal of Applied Physics, 1991, 69(9): 6334-6339. doi: 10.1063/1.348832
    [35] Blaise G. New approach to flashover in dielectrics based on a polarization energy relaxation mechanism[J]. IEEE Transactions on Electrical Insulation, 1993, 28(4): 437-443. doi: 10.1109/14.231522
    [36] Miller H C. Flashover of insulators in vacuum: review of the phenomena and techniques to improved holdoff voltage[J]. IEEE Transactions on Electrical Insulation, 1993, 28(4): 512-527. doi: 10.1109/14.231534
    [37] Bommakanti R G, Sudarshan T S. Trap-dominated breakdown processes in an insulator bridged vacuum gap[J]. Journal of Applied Physics, 1989, 66(5): 2091-2099. doi: 10.1063/1.344302
    [38] Kumara S, Serdyuk Y V, Gubanski S M. Simulation of surface charge effect on impulse flashover characteristics of outdoor polymeric insulators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(6): 1754-1763. doi: 10.1109/TDEI.2010.5658226
    [39] Kato K, Kato H, Ishida T, et al. Influence of surface charges on impulse flashover characteristics of alumina dielectrics in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(6): 1710-1716. doi: 10.1109/TDEI.2009.5361594
    [40] Du Boxue, Xiao Meng. Influence of surface charge on DC flashover characteristics of epoxy/BN nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(2): 529-536. doi: 10.1109/TDEI.2013.004137
    [41] Kumara S, Serdyuk Y V, Gubanski S M. Surface charge decay on polymeric materials under different neutralization modes in air[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(5): 1779-1788. doi: 10.1109/TDEI.2011.6032850
    [42] Jaitly N C, Sudarshan T S. In-situ insulator surface charge measurements in dielectric bridged vacuum gaps using an electrostatic probe[J]. IEEE Transactions on Electrical Insulation, 1988, 23(2): 261-273. doi: 10.1109/14.2362
    [43] Kindersberger J, Lederle C. Surface charge decay on insulators in air and sulfurhexafluorid—part I: simulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(4): 941-948. doi: 10.1109/TDEI.2008.4591214
    [44] Kindersberger J, Lederle C. Surface charge decay on insulators in air and sulfurhexafluorid—part II: measurements[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(4): 949-957. doi: 10.1109/TDEI.2008.4591215
    [45] 王邸博, 唐炬, 刘凯. 直流高压下GIS支柱绝缘子表面电荷积聚特性[J]. 高电压技术, 2015, 41(9):3073-3081 doi: 10.13336/j.1003-6520.hve.2015.09.035

    Wang Dibo, Tang Ju, Liu Kai. Charge accumulation on post insulator surface under HVDC in GIS[J]. High Voltage Engineering, 2015, 41(9): 3073-3081 doi: 10.13336/j.1003-6520.hve.2015.09.035
    [46] 王邸博, 唐炬, 陶加贵, 等. 直流电压下闪络及电晕后聚合物表面电荷积聚特性[J]. 高电压技术, 2015, 41(11):3618-3627 doi: 10.13336/j.1003-6520.hve.2015.11.014

    Wang Dibo, Tang Ju, Tao Jiagui, et al. Surface charge accumulation characteristics on polymer after flashover and corona charging under DC voltage[J]. High Voltage Engineering, 2015, 41(11): 3618-3627 doi: 10.13336/j.1003-6520.hve.2015.11.014
    [47] 陈士修, 解广润. 温度对电晕特性的影响[J]. 高电压技术, 1994, 20(3):3-8 doi: 10.13336/j.1003-6520.hve.1994.03.002

    Chen Shixiu, Xie Guangrun. The effect of temperature on the corona performances[J]. High Voltage Engineering, 1994, 20(3): 3-8 doi: 10.13336/j.1003-6520.hve.1994.03.002
    [48] Nakanishi K, Yoshioka A, Arahata Y, et al. Surface charging on epoxy spacer at DC stress in compressed SF6 GAS[J]. IEEE Transactions on Power Apparatus and Systems, 1983, PAS-102(12): 3919-3927. doi: 10.1109/TPAS.1983.317931
    [49] Lutz B, Kindersberger J. Influence of the relative humidity on the DC potential distribution of polymeric cylindrical model insulators[C]//Proceedings of the 2010 International Conference on Condition Monitoring and Diagnosis, 2010: 541-544.
    [50] 汪沨, 方志, 邱毓昌. 高压直流GIS中绝缘子的表面电荷积聚的研究[J]. 中国电机工程学报, 2005, 25(3):105-109 doi: 10.3321/j.issn:0258-8013.2005.03.020

    Wang Feng, Fang Zhi, Qiu Yuchang. Study of charge accumulation on insulator surface in HVDC gas-insulated switchgear[J]. Proceedings of the CSEE, 2005, 25(3): 105-109 doi: 10.3321/j.issn:0258-8013.2005.03.020
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  905
  • HTML全文浏览量:  317
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-15
  • 修回日期:  2022-11-17
  • 录用日期:  2022-11-25
  • 网络出版日期:  2022-11-28
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回