留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于激光等离子体的X/γ辐射研究进展

鲁瑜 张昊 张亮琪 魏玉清 李倩妮 沙荣 邵福球 余同普

鲁瑜, 张昊, 张亮琪, 等. 基于激光等离子体的X/γ辐射研究进展[J]. 强激光与粒子束, 2023, 35: 012006. doi: 10.11884/HPLPB202335.220222
引用本文: 鲁瑜, 张昊, 张亮琪, 等. 基于激光等离子体的X/γ辐射研究进展[J]. 强激光与粒子束, 2023, 35: 012006. doi: 10.11884/HPLPB202335.220222
Lu Yu, Zhang Hao, Zhang Liangqi, et al. Research progress of X/γ photon emission in laser-plasma interaction[J]. High Power Laser and Particle Beams, 2023, 35: 012006. doi: 10.11884/HPLPB202335.220222
Citation: Lu Yu, Zhang Hao, Zhang Liangqi, et al. Research progress of X/γ photon emission in laser-plasma interaction[J]. High Power Laser and Particle Beams, 2023, 35: 012006. doi: 10.11884/HPLPB202335.220222

基于激光等离子体的X/γ辐射研究进展

doi: 10.11884/HPLPB202335.220222
基金项目: 国家自然科学基金项目(12135009, 11875319); 湖南省科技创新计划(2020RC4020); 湖南省研究生创新项目(CX20200002, CX20200038)
详细信息
    作者简介:

    鲁 瑜,luyu0821@163.com

    通讯作者:

    余同普,tongpu@nudt.edu.cn

  • 中图分类号: O536

Research progress of X/γ photon emission in laser-plasma interaction

  • 摘要: 随着激光技术的不断发展,激光功率突破10 PW量级,激光与物质相互作用进入近量子电动力学(QED)范畴。从弱相对论激光到相对论激光再到强相对论激光,激光场与物质的耦合可以产生能量从keV到MeV甚至GeV的X/γ射线。这些辐射具有通量大、亮度高、能量高和脉宽短等特点,在核物理、高能量密度物理、天体物理等基础研究以及材料科学、成像、医学等领域具有广泛应用前景。系统梳理了近年来相对论强激光与气体、近临界密度等离子体及固体靶相互作用,通过诸如同步辐射、betatron和类betatron辐射、Thomson散射和非线性Compton散射过程等产生高能X/γ射线的最新研究进展,总结了各种方案产生的X/γ射线的品质因子和潜在应用,并为下一步基于强激光大科学装置的实验研究提供理论参考。
  • 图  1  (a)t =825 fs时等离子体尾波(绿色等值面)、注入电子束(红点)、驱动电场和注入激光(蓝-红-橙-绿等值面)的空间分布;(b)电离时间 t =132 fs时空泡内注入电子的动量分布[37]

    Figure  1.  (a) Spatial distributions of the plasma wake (green iso-surfaces), the injected electron beam (red points), the electric fields of the drive and injection lasers (blue-red-orange-green iso-surfaces) at t = 825 fs. (b) Momentum distribution of the accelerated electrons at the ionization time of t = 132 fs[37]

    图  2  高能光子辐射的双阶段等离子体方案示意图[39]

    Figure  2.  Schematic of the two-stage scheme[39]

    图  3  超强激光照射由固体靶和相对论透明通道组成的复合靶产生高准直辐射示意图[46]

    Figure  3.  Schematic of an intense laser striking a target combined with bulk solid density targets and transparent channel[46]

    图  4  近临界密度(NCD)等离子体中涡旋激光产生准单能γ射线示意图[57]

    Figure  4.  Schematic diagram of quasi-monoenergetic γ-rays generation by twisted lasers in near critical density (NCD) plasma[57]

    图  5  超强线极化激光照射由近临界密度等离子体填充的平顶铝锥的示意图[58]

    Figure  5.  Schematic view of an intense linearly polarized laser striking a near-critical-density plasmas filled Al cone[58]

    图  6  (a)电子和质子在t1 =17.5T0t2 = 20T0t3 = 22.5T0t4 = 25T0时刻的三维演化;(b)质子密度在x-y平面的投影和横向电场Eyx-z平面的投影[67]

    Figure  6.  (a) 3D evolutions of electrons and protons at t1 =17.5T0t2 = 20T0t3 = 22.5T0t4 = 25T0. (b) Projections of proton density distributions in the x-y plane and transverse electrical fields Ey in the x-z plane[67]

    图  7  双束激光照射类金刚石薄膜靶产生超高亮度伽马射线示意图[75]

    Figure  7.  Schematic diagram of ultra-bright γ-ray emission by counter-propagating lasers irradiating two diamondlike carbon (DLC) foils[75]

    图  8  激光辐照光扇通道靶产生涡旋γ射线的原理图[81]

    Figure  8.  Schematic of γ-ray vortex generation from a laser-illuminated light-fan-in-channel target[81]

    图  9  双色(ω0, 2ω0)圆偏振激光与稠密等离子体靶相互作用产生阿秒脉冲的示意图[89]

    Figure  9.  Schematic of the attosecond pulses generation from the interaction between a two-color (ω0, 2ω0) circularly-polarized laser and a dense plasma target [89]

    表  1  基于不同方案的激光等离子体X/γ射线源对比

    Table  1.   Comparison of different X/γ-ray sources from several typical schemes based-on laser-plasma interaction

    schemeslaser intensity/
    (W·cm−2)
    cut-off photon
    energy/MeV
    efficiency/%divergence
    angle/(°)
    peak
    brilliance*
    reference
    mediummechanismlaser model
    gas
    plasma
    betatronGaussian
    +Gaussian
    1×1018 @2 μm,0.004~0.321019 @500 eV[37]
    2×1019@0.4 μm
    Gaussian4.9×10213000>10~0.34×1026 @1 MeV[39]
    NCD
    plasma
    betatron-likeGaussian5×1020700.03~35[41]
    Gaussian8.6×1022300013~111026 @1 MeV[48]
    LG(0,1)5×10225001.8~6(>100 MeV)1024 @1 MeV[49]
    ComptonLG(0,1)
    +Gaussian
    9.7×1022150017~158.04×1025 @13 MeV[57]
    3×1022
    Gaussian3×102315001.4~222×1024 @58 MeV[59]
    5.3×1021402~401.1×1023 @1 MeV[61]
    solid
    plasma
    synchrotronGaussian3×10200.010.012~53.7×1022 @100%[64]
    Gaussian2.3×10200.040.001~0.01~21023[65]
    betatron-likeGaussian4.3×102150010~11.2×1027 @5 MeV[69]
    ComptonGaussian
    +Gaussian
    1.1×102330002~5.71.2×1025 @15 MeV[75]
    1.1×1023
    LG(0,1)4.3×1021340.51~11~1023 @1 MeV[79]
    Gaussian**1.4×1022781.2~9~1022 @1 MeV[81]
    * (photons·s−1·mm−2·mrad−2·(0.1%bw)−1);** (vortex γ-rays)
    下载: 导出CSV
  • [1] Einstein A. Strahlungs-Emission und -Absorption nach der Quantentheorie[J]. Verhandlungen der Deutschen Physikalischen Gesellschaft, 1916, 18: 318-323.
    [2] Li Wenqi, Gan Zebiao, Yu Lianghong, et al. 339 J high-energy Ti: sapphire chirped-pulse amplifier for 10 PW laser facility[J]. Optics Letters, 2018, 43(22): 5681-5684. doi: 10.1364/OL.43.005681
    [3] Lureau F, Matras G, Chalus O, et al. High-energy hybrid femtosecond laser system demonstrating 2×10 PW capability[J]. High Power Laser Science and Engineering, 2020, 8: e43. doi: 10.1017/hpl.2020.41
    [4] Blackburn T G, Ridgers C P, Kirk J G, et al. Quantum radiation reaction in laser–electron-beam collisions[J]. Physical Review Letters, 2014, 112: 015001. doi: 10.1103/PhysRevLett.112.015001
    [5] Schwinger J. On gauge invariance and vacuum polarization[J]. Physical Review, 1951, 82(5): 664-679. doi: 10.1103/PhysRev.82.664
    [6] Ridgers C P, Brady C S, Duclous R, et al. Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids[J]. Physical Review Letters, 2012, 108: 165006. doi: 10.1103/PhysRevLett.108.165006
    [7] Bell A R, Kirk J G. Possibility of prolific pair production with high-power lasers[J]. Physical Review Letters, 2008, 101: 200403. doi: 10.1103/PhysRevLett.101.200403
    [8] Martin J L, Migus A, Mourou G A, et al. Ultrafast phenomena VIII[M]. Berlin: Springer, 1993.
    [9] Kuraev E A, Bystritskiy Y M, Tomasi-Gustafsson E. Bremsstrahlung and pair production processes at low energies: multidifferential cross section and polarization phenomena[J]. Physical Review C, 2010, 81: 055208. doi: 10.1103/PhysRevC.81.055208
    [10] Galy J, Maučec M, Hamilton D J, et al. Bremsstrahlung production with high-intensity laser matter interactions and applications[J]. New Journal of Physics, 2007, 9: 23. doi: 10.1088/1367-2630/9/2/023
    [11] Yan Wenchao, Fruhling C, Golovin G, et al. High-order multiphoton Thomson scattering[J]. Nature Photonics, 2017, 11(8): 514-520. doi: 10.1038/nphoton.2017.100
    [12] Sarri G, Corvan D J, Schumaker W, et al. Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering[J]. Physical Review Letters, 2014, 113: 224801. doi: 10.1103/PhysRevLett.113.224801
    [13] Henderson A, Liang E, Riley N, et al. Ultra-intense gamma-rays created using the Texas Petawatt Laser[J]. High Energy Density Physics, 2014, 12: 46-56. doi: 10.1016/j.hedp.2014.06.004
    [14] Cipiccia S, Islam M R, Ersfeld B, et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake[J]. Nature Physics, 2011, 7(11): 867-871. doi: 10.1038/nphys2090
    [15] Capdessus R, d’Humières E, Tikhonchuk V T. Influence of ion mass on laser-energy absorption and synchrotron radiation at ultrahigh laser intensities[J]. Physical Review Letters, 2013, 110: 215003. doi: 10.1103/PhysRevLett.110.215003
    [16] Chen L, Dürr K L, Gouaux E. X-ray structures of AMPA receptor–cone snail toxin complexes illuminate activation mechanism[J]. Science, 2014, 345(6200): 1021-1026. doi: 10.1126/science.1258409
    [17] de Castro Fonseca M, Araujo B H S, Dias C S B, et al. High-resolution synchrotron-based X-ray microtomography as a tool to unveil the three-dimensional neuronal architecture of the brain[J]. Scientific Reports, 2018, 8: 12074. doi: 10.1038/s41598-018-30501-x
    [18] Kersell H, Shirato N, Cummings M, et al. Detecting element specific electrons from a single cobalt nanocluster with synchrotron X-ray scanning tunneling microscopy[J]. Applied Physics Letters, 2017, 111: 103102. doi: 10.1063/1.4990818
    [19] Corde S, Ta Phuoc K, Lambert G, et al. Femtosecond X rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48. doi: 10.1103/RevModPhys.85.1
    [20] Chen Liming, Yan Wenchao, Li D Z, et al. Bright betatron X-ray radiation from a laser-driven-clustering gas target[J]. Scientific Reports, 2013, 3: 1912. doi: 10.1038/srep01912
    [21] 陈民, 刘峰, 李博原, 等. 激光等离子体尾波加速器的发展和展望[J]. 强激光与粒子束, 2020, 32:092001 doi: 10.11884/HPLPB202032.200174

    Chen Min, Liu Feng, Li Boyuan, et al. Development and prospect of laser plasma wakefield accelerator[J]. High Power Laser and Particle Beams, 2020, 32: 092001 doi: 10.11884/HPLPB202032.200174
    [22] Döpp A, Hehn L, Götzfried J, et al. Quick X-ray microtomography using a laser-driven betatron source[J]. Optica, 2018, 5(2): 199-203. doi: 10.1364/OPTICA.5.000199
    [23] Fourmaux S, Hallin E, Chaulagain U, et al. Laser-based synchrotron X-ray radiation experimental scaling[J]. Optics Express, 2020, 28(3): 3147-3158. doi: 10.1364/OE.383818
    [24] Tajima T, Dawson J M. Laser electron accelerator[J]. Physical Review Letters, 1979, 43(4): 267-270. doi: 10.1103/PhysRevLett.43.267
    [25] Pukhov A, Meyer-ter-Vehn J. Laser wake field acceleration: the highly non-linear broken-wave regime[J]. Applied Physics B, 2002, 74(4): 355-361.
    [26] Lu W, Tzoufras M, Joshi C, et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime[J]. Physical Review Special Topics-Accelerators and Beams, 2007, 10: 061301. doi: 10.1103/PhysRevSTAB.10.061301
    [27] Jansen O, Tückmantel T, Pukhov A. Scaling electron acceleration in the bubble regime for upcoming lasers[J]. The European Physical Journal Special Topics, 2014, 223(6): 1017-1030. doi: 10.1140/epjst/e2014-02152-8
    [28] Esarey E, Shadwick B A, Catravas P, et al. Synchrotron radiation from electron beams in plasma-focusing channels[J]. Physical Review E, 2002, 65: 056505. doi: 10.1103/PhysRevE.65.056505
    [29] Ferri J, Corde S, Döpp A, et al. High-brilliance betatron γ-ray source powered by laser-accelerated electrons[J]. Physical Review Letters, 2018, 120: 254802. doi: 10.1103/PhysRevLett.120.254802
    [30] Kozlova M, Andriyash I, Gautier J, et al. Hard X rays from laser-wakefield accelerators in density tailored plasmas[J]. Physical Review X, 2020, 10: 011061.
    [31] Vieira J, Martins J, Sinha U. Plasma based helical undulator for controlled emission of circularly and elliptically polarised betatron radiation[DB/OL]. arXiv preprint arXiv: 1601.04422, 2016.
    [32] Ferri J, Davoine X. Enhancement of betatron X rays through asymmetric laser wakefield generated in transverse density gradients[J]. Physical Review Accelerators and Beams, 2018, 21: 091302. doi: 10.1103/PhysRevAccelBeams.21.091302
    [33] Lamberti C, Groppo E, Prestipino C, et al. Oxide/metal interface distance and epitaxial strain in the NiO/Ag(001) system[J]. Physical Review Letters, 2003, 91: 046101. doi: 10.1103/PhysRevLett.91.046101
    [34] Stöhr J, Wu Y, Hermsmeier B D, et al. Element-specific magnetic microscopy with circularly polarized X-rays[J]. Science, 1993, 259(5095): 658-661. doi: 10.1126/science.259.5095.658
    [35] Döpp A, Mahieu B, Lifschitz A, et al. Stable femtosecond X-rays with tunable polarization from a laser-driven accelerator[J]. Light: Science & Applications, 2017, 6: e17086.
    [36] Feng Jie, Li Yifei, Geng Xiaotao, et al. Circularly polarized X-ray generation from an ionization induced laser plasma electron accelerator[J]. Plasma Physics and Controlled Fusion, 2020, 62: 105021. doi: 10.1088/1361-6587/abaf0b
    [37] Zhang Guobo, Chen Min, Yang Xiaohu, et al. Betatron radiation polarization control by using an off-axis ionization injection in a laser wakefield acceleration[J]. Optics Express, 2020, 28(20): 29927-29936. doi: 10.1364/OE.404723
    [38] Chen Min, Esarey E, Schroeder C B, et al. Theory of ionization-induced trapping in laser-plasma accelerators[J]. Physics of Plasmas, 2012, 19: 033101. doi: 10.1063/1.3689922
    [39] Zhu Xinglong, Chen Min, Weng Suming, et al. Extremely brilliant GeV γ-rays from a two-stage laser-plasma accelerator[J]. Science Advances, 2020, 6: eaaz7240. doi: 10.1126/sciadv.aaz7240
    [40] Ji Liangliang, Pukhov A, Kostyukov I Y, et al. Radiation-reaction trapping of electrons in extreme laser fields[J]. Physical Review Letters, 2014, 112: 145003. doi: 10.1103/PhysRevLett.112.145003
    [41] Tan J H, Li Y F, Li D Z, et al. Observation of high efficiency Betatron radiation from femtosecond petawatt laser irradiated near critical plasmas[DB/OL]. arXiv preprint arXiv: 2109.12467, 2021.
    [42] Di Piazza A, Müller C, Hatsagortsyan K Z, et al. Extremely high-intensity laser interactions with fundamental quantum systems[J]. Reviews of Modern Physics, 2012, 84(3): 1177-1228. doi: 10.1103/RevModPhys.84.1177
    [43] Landau L D, Lifshitz E M. The classical theory of fields[M]. 4th ed. Oxford: Butterworth-Heinemann, 1980.
    [44] Zhu Xinglong, Yin Yan, Yu Tongpu, et al. Enhanced electron trapping and γ-ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold cone[J]. New Journal of Physics, 2015, 17: 053039. doi: 10.1088/1367-2630/17/5/053039
    [45] Zhu Xinglong, Yin Yan, Yu Tongpu, et al. Ultra-bright, high-energy-density γ-ray emission from a gas-filled gold cone-capillary[J]. Physics of Plasmas, 2015, 22: 093109. doi: 10.1063/1.4930117
    [46] Stark D J, Toncian T, Arefiev A V. Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field[J]. Physical Review Letters, 2016, 116: 185003. doi: 10.1103/PhysRevLett.116.185003
    [47] Popmintchev T, Chen Mingchang, Popmintchev D, et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers[J]. Science, 2012, 336(6086): 1287-1291. doi: 10.1126/science.1218497
    [48] Lu Yu, Zhang Guobo, Zhao Jie, et al. Ultra-brilliant GeV betatronlike radiation from energetic electrons oscillating in frequency-downshifted laser pulses[J]. Optics Express, 2021, 29(6): 8926-8940. doi: 10.1364/OE.419761
    [49] Hu Yanting, Zhao Jie, Zhang Hao, et al. Attosecond γ-ray vortex generation in near-critical-density plasma driven by twisted laser pulses[J]. Applied Physics Letters, 2021, 118: 054101. doi: 10.1063/5.0028203
    [50] Zhu Xinglong, Yu Tongpu, Chen Min, et al. Generation of GeV positron and γ-photon beams with controllable angular momentum by intense lasers[J]. New Journal of Physics, 2018, 20: 083013. doi: 10.1088/1367-2630/aad71a
    [51] Lu Yu, Zhang Hao, Hu Yanting, et al. Effect of laser polarization on the electron dynamics and photon emission in near-critical-density plasmas[J]. Plasma Physics and Controlled Fusion, 2020, 62: 035002. doi: 10.1088/1361-6587/ab61e1
    [52] Compton A H. A quantum theory of the scattering of X-rays by light elements[J]. Physical Review, 1923, 21(5): 483-502. doi: 10.1103/PhysRev.21.483
    [53] Gu Y J, Klimo O, Weber S, et al. High density ultrashort relativistic positron beam generation by laser-plasma interaction[J]. New Journal of Physics, 2016, 18: 113023. doi: 10.1088/1367-2630/18/11/113023
    [54] Zhu Xinglong, Yu Tongpu, Sheng Zhengming, et al. Dense GeV electron–positron pairs generated by lasers in near-critical-density plasmas[J]. Nature Communications, 2016, 7: 13686. doi: 10.1038/ncomms13686
    [55] Shen Yijie, Wang Xuejiao, Xie Zhenwei, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science & Applications, 2019, 8: 90.
    [56] Harwit M. Photon orbital angular momentum in astrophysics[J]. The Astrophysical Journal, 2003, 597(2): 1266-1270. doi: 10.1086/378623
    [57] Zhao Jie, Hu Yanting, Lu Yu, et al. All-optical quasi-monoenergetic GeV positron bunch generation by twisted laser fields[J]. Communications Physics, 2022, 5(1): 1-10. doi: 10.1038/s42005-021-00784-0
    [58] Liu Jinjin, Yu Tongpu, Yin Yan, et al. All-optical bright γ-ray and dense positron source by laser driven plasmas-filled cone[J]. Optics Express, 2016, 24(14): 15978-15986. doi: 10.1364/OE.24.015978
    [59] Gu Yanjun, Klimo O, Bulanov S V, et al. Brilliant gamma-ray beam and electron-positron pair production by enhanced attosecond pulses[J]. Communications Physics, 2018, 1: 93. doi: 10.1038/s42005-018-0095-3
    [60] Liu Jianbo, Yu Jinqing, Shou Yinren, et al. Generation of bright γ-ray/hard X-ray flash with intense femtosecond pulses and double-layer targets[J]. Physics of Plasmas, 2019, 26: 033109. doi: 10.1063/1.5085306
    [61] Huang T W, Kim C M, Zhou Cangtao, et al. Tabletop laser-driven gamma-ray source with nanostructured double-layer target[J]. Plasma Physics and Controlled Fusion, 2018, 60: 115006. doi: 10.1088/1361-6587/aadbeb
    [62] Kneip S, Nagel S R, Bellei C, et al. Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity[J]. Physical Review Letters, 2008, 100: 105006. doi: 10.1103/PhysRevLett.100.105006
    [63] Huang T W, Robinson A P L, Zhou C T, et al. Characteristics of betatron radiation from direct-laser-accelerated electrons[J]. Physical Review E, 2016, 93: 063203. doi: 10.1103/PhysRevE.93.063203
    [64] Wang Jian, Zhu Bin, Yu Tongpu, et al. High-flux X-ray photon emission by a superluminal hybrid electromagnetic mode of intense laser in a plasma waveguide[J]. Plasma Physics and Controlled Fusion, 2019, 61: 085026. doi: 10.1088/1361-6587/ab27d4
    [65] Yi Longqing, Pukhov A, Shen Baifei. Radiation from laser-microplasma-waveguide interactions in the ultra-intense regime[J]. Physics of Plasmas, 2016, 23: 073110. doi: 10.1063/1.4958314
    [66] Wang Jian, Zhu Bin, Wang Dangchao, et al. Brilliant keV-MeV X-ray emission through weakly unbalanced quasi-static electric and magnetic fields[J]. Plasma Physics and Controlled Fusion, 2020, 62: 025016. doi: 10.1088/1361-6587/ab586c
    [67] Yu Tongpu, Pukhov A, Sheng Zhengming, et al. Bright betatronlike X rays from radiation pressure acceleration of a mass-limited foil target[J]. Physical Review Letters, 2013, 110: 045001. doi: 10.1103/PhysRevLett.110.045001
    [68] Yu Tongpu, Sheng Zhengming, Yin Yan, et al. Dynamics of laser mass-limited foil interaction at ultra-high laser intensities[J]. Physics of Plasmas, 2014, 21: 053105. doi: 10.1063/1.4879034
    [69] Wang Weimin, Sheng Zhengming, Gibbon P, et al. Collimated ultrabright gamma rays from electron wiggling along a petawatt laser-irradiated wire in the QED regime[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(40): 9911-9916. doi: 10.1073/pnas.1809649115
    [70] Yu Jinqing, Hu Ronghao, Gong Zheng, et al. The generation of collimated γ-ray pulse from the interaction between 10 PW laser and a narrow tube target[J]. Applied Physics Letters, 2018, 112: 204103. doi: 10.1063/1.5030942
    [71] Luo Wen, Zhuo Hongbin, Ma Yanyun, et al. Attosecond Thomson-scattering X-ray source driven by laser-based electron acceleration[J]. Applied Physics Letters, 2013, 103: 174103. doi: 10.1063/1.4826600
    [72] Hu Lixiang, Yu Tongpu, Shao Fuqiu, et al. A bright attosecond X-ray pulse train generation in a double-laser-driven cone target[J]. Journal of Applied Physics, 2016, 119: 243301. doi: 10.1063/1.4954321
    [73] Luo Wen, Zhu Yibo, Zhuo Hongbin, et al. Dense electron-positron plasmas and gamma-ray bursts generation by counter-propagating quantum electrodynamics-strong laser interaction with solid targets[J]. Physics of Plasmas, 2015, 22: 063112. doi: 10.1063/1.4923265
    [74] Chang Hengxin, Qiao Bin, Xu Z, et al. Generation of overdense and high-energy electron-positron-pair plasmas by irradiation of a thin foil with two ultraintense lasers[J]. Physical Review E, 2015, 92: 053107. doi: 10.1103/PhysRevE.92.053107
    [75] Li Hanzhen, Yu Tongpu, Liu Jinjin, et al. Ultra-bright γ-ray emission and dense positron production from two laser-driven colliding foils[J]. Scientific Reports, 2017, 7: 17312. doi: 10.1038/s41598-017-17605-6
    [76] Li Hanzhen, Yu Tongpu, Hu Lixiang, et al. Ultra-bright γ-ray flashes and dense attosecond positron bunches from two counter-propagating laser pulses irradiating a micro-wire target[J]. Optics Express, 2017, 25(18): 21583-21593. doi: 10.1364/OE.25.021583
    [77] Lu Yu, Yu Tongpu, Hu Lixiang, et al. Enhanced copious electron–positron pair production via electron injection from a mass-limited foil[J]. Plasma Physics and Controlled Fusion, 2018, 60: 125008. doi: 10.1088/1361-6587/aae819
    [78] Zhang Liangqi, Wu Shaodong, Huang Hairong, et al. Brilliant attosecond γ-ray emission and high-yield positron production from intense laser-irradiated nano-micro array[J]. Physics of Plasmas, 2021, 28: 023110. doi: 10.1063/5.0030909
    [79] Zhu Xinglong, Chen Min, Yu Tongpu, et al. Bright attosecond γ-ray pulses from nonlinear Compton scattering with laser-illuminated compound targets[J]. Applied Physics Letters, 2018, 112: 174102. doi: 10.1063/1.5028555
    [80] Liu Chen, Shen Baifei, Zhang Xiaomei, et al. Generation of gamma-ray beam with orbital angular momentum in the QED regime[J]. Physics of Plasmas, 2016, 23: 093120. doi: 10.1063/1.4963396
    [81] Zhang Hao, Zhao Jie, Hu Yanting, et al. Efficient bright γ-ray vortex emission from a laser-illuminated light-fan-in-channel target[J]. High Power Laser Science and Engineering, 2021, 9: e43. doi: 10.1017/hpl.2021.29
    [82] Feng B, Qin C Y, Geng Xuesong, et al. The emission of γ-ray beams with orbital angular momentum in laser-driven micro-channel plasma target[J]. Scientific Reports, 2019, 9: 18780. doi: 10.1038/s41598-019-55217-4
    [83] Liu Ke, Yu Tongpu, Zou Debin, et al. Twisted radiation from nonlinear Thomson scattering with arbitrary incident angle[J]. The European Physical Journal D, 2020, 74: 7. doi: 10.1140/epjd/e2019-100437-4
    [84] Haessler S, Ouillé M, Kaur J, et al. High-harmonic generation and correlated electron emission from relativistic plasma mirrors at 1 kHz repetition rate[J]. Ultrafast Science, 2022, 2022: 9893418.
    [85] Mirzanejad S, Salehi M. Two-color high-order-harmonic generation: relativistic mirror effects and attosecond pulses[J]. Physical Review A, 2013, 87: 063815. doi: 10.1103/PhysRevA.87.063815
    [86] Zhang Xueyu, Rykovanov S, Shi Mingyuan, et al. Giant isolated attosecond pulses from two-color laser-plasma interactions[J]. Physical Review Letters, 2020, 124: 114802. doi: 10.1103/PhysRevLett.124.114802
    [87] Zhong C L, Qiao B, Xu X R, et al. Intense circularly polarized attosecond pulse generation from solid targets irradiated with a two-color linearly polarized laser[J]. Physical Review A, 2020, 101: 053814. doi: 10.1103/PhysRevA.101.053814
    [88] Chen Ziyu. Spectral control of high harmonics from relativistic plasmas using bicircular fields[J]. Physical Review E, 2018, 97: 043202. doi: 10.1103/PhysRevE.97.043202
    [89] Li Qianni, Xu Xinrong, Wu Yanbo, et al. Efficient high-order harmonics generation from overdense plasma irradiated by a two-color co-rotating circularly polarized laser pulse[J]. Optics Express, 2022, 30(9): 15470-15481. doi: 10.1364/OE.459866
    [90] Li Qianni, Xu Xinrong, Wu Yanbo, et al. Generation of single circularly polarized attosecond pulse from near-critical density plasma irradiated by a two-color co-rotating circular polarized laser. (Under Review).
    [91] 郭博, 刘得翔, 吴双华, 等. 基于激光尾波加速的涡轮叶片高能X射线CT[J]. 强激光与粒子束, 2021, 33:074001 doi: 10.11884/HPLPB202133.210201

    Guo Bo, Liu Dexiang, Wu Shuanghua, et al. Micro-focus computed tomography for turbine blade based on all-optical bremsstrahlung source[J]. High Power Laser and Particle Beams, 2021, 33: 074001 doi: 10.11884/HPLPB202133.210201
    [92] Weeks K J, Litvinenko V N, Madey J M. The Compton backscattering process and radiotherapy[J]. Medical Physics, 1997, 24(3): 417-423. doi: 10.1118/1.597903
    [93] 高党忠, 赵学森, 马小军, 等. X射线相衬成像法检测内爆靶参数[J]. 强激光与粒子束, 2012, 24(11):2627-2630 doi: 10.3788/HPLPB20122411.2627

    Gao Dangzhong, Zhao Xuesen, Ma Xiaojun, et al. Measurement of implosion target parameters by X-ray phase contrast imaging[J]. High Power Laser and Particle Beams, 2012, 24(11): 2627-2630 doi: 10.3788/HPLPB20122411.2627
    [94] Kwan E, Rusev G, Adekola A S, et al. Discrete deexcitations in 235U below 3 MeV from nuclear resonance fluorescence[J]. Physical Review C, 2011, 83: 041601.
    [95] Chen Hui, Link A, Sentoku Y, et al. The scaling of electron and positron generation in intense laser-solid interactions[J]. Physics of Plasmas, 2015, 22: 056705. doi: 10.1063/1.4921147
    [96] Bulanov S V, Esirkepov T Z, Kando M, et al. On the problems of relativistic laboratory astrophysics and fundamental physics with super powerful lasers[J]. Plasma Physics Reports, 2015, 41(1): 1-51. doi: 10.1134/S1063780X15010018
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1377
  • HTML全文浏览量:  606
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30
  • 修回日期:  2022-09-05
  • 网络出版日期:  2022-09-09
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回