留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒激光Betatron辐射源的现状与发展趋势分析

黄瑞贤 奚传易 韩立琦 余金清 余同普 颜学庆

黄瑞贤, 奚传易, 韩立琦, 等. 飞秒激光Betatron辐射源的现状与发展趋势分析[J]. 强激光与粒子束, 2023, 35: 012009. doi: 10.11884/HPLPB202335.220229
引用本文: 黄瑞贤, 奚传易, 韩立琦, 等. 飞秒激光Betatron辐射源的现状与发展趋势分析[J]. 强激光与粒子束, 2023, 35: 012009. doi: 10.11884/HPLPB202335.220229
Huang Ruixian, Xi Chuanyi, Han Liqi, et al. Current situation and development trend analysis of femtosecond laser Betatron radiation source[J]. High Power Laser and Particle Beams, 2023, 35: 012009. doi: 10.11884/HPLPB202335.220229
Citation: Huang Ruixian, Xi Chuanyi, Han Liqi, et al. Current situation and development trend analysis of femtosecond laser Betatron radiation source[J]. High Power Laser and Particle Beams, 2023, 35: 012009. doi: 10.11884/HPLPB202335.220229

飞秒激光Betatron辐射源的现状与发展趋势分析

doi: 10.11884/HPLPB202335.220229
基金项目: 国家自然科学基金项目(11921006; 11535001; 12175058)
详细信息
    作者简介:

    黄瑞贤,ruixian@hnu.edu.cn

  • 中图分类号: O434.12

Current situation and development trend analysis of femtosecond laser Betatron radiation source

  • 摘要: 在过去的几十年里,超短超强激光在等离子体中激发尾场加速电子束取得了长足的发展,基于该方式获得的高能电子束可以应用于辐射源的产生,其产生的高亮度强辐射源受到了广泛的关注。介绍了超短超强激光脉冲与低密度等离子体相互作用产生Betatron辐射的基本原理和研究现状;结合X-ray应用需求分析了Betatron辐射的发展趋势,发现迫切需要发展基于紧凑型激光装置的尾场电子加速新方案,以突破Beam-loading效应对电量的限制,产生大电量电子束,进而获得高流强的Betatron辐射源;介绍了北京大学颜学庆教授领导的联合团队利用数百TW飞秒激光产生10 nC级大电量高能电子束和单发光子数目为$ 1.0\times {10}^{12} $的Betatron辐射源的新方案。
  • 图  1  Betatron辐射源原理图[7]

    Figure  1.  Schematic of the Betatron radiation source[7]

    图  2  a0=20,ne=0.1nc时,不同时刻激光与等离子体相互作用过程中等离子体空泡的形成、电子束的注入、电子束与激光共振、空泡不稳定性发展等过程

    Figure  2.  When a0=20,ne=0.1nc, the formation of plasma bubble, injection of electron beam, resonance of electron beam and laser, development of bubble instability and other processes during the interaction between laser and plasma at different moments

    图  3  a0=20,ne=0.1nc时,(a)电子束在500 fs时刻的角-谱分布,(b)产生的Betatron辐射在1.2 ps时刻的角-谱分布,其发散角的半高全宽约6°

    Figure  3.  When a0=20, ne=0.1nc, (a) angular distribution of electrons at t = 500 fs, (b) the angular distribution of total photons at t = 1.2 ps, and full-width-at-half-maximum (FWHM) about 6°

    表  1  相关Betatron辐射源实验结果统计

    Table  1.   Statistics of related Betatron radiation source experiments

    authorbrilliancephoton number per shotEc/keV
    A. Rousse[37], 20042×1022 ph·s−1·mm−2·mrad−2·(0.1%bw)−11×1082
    S. Kneip[38], 20081×1017 ph·s−1·mm−2·mrad−2·(0.1%bw)−1N/A36
    S. Mangles[39], 2009N/A3×1075
    D. Thorn[40], 2010N/A1×1081.5
    G. Genoud[41], 20115 × 104 ph·mrad−21×1081.3
    S. Cipiccia[22], 20111×1023 ph·s−1·mm−2·mrad−2·(0.1%bw)−15×10850
    S. Fourmaux[42], 20112.2×108 ph·(0.1%bw)−1·sr−11×10912.3
    J. Ju[43], 20121×1021 ph·(0.1%bw)−1·sr−11×1094.6
    M. Schnell[19], 20125×1021 ph·(0.1%bw)−1·sr−12×1066
    X. Wang[44], 2013N/A1×10930
    L. Chen[27], 20135×1021 ph·(0.1%bw)−1·sr−12×1082.4
    M. Schnell[45], 2013N/A5×1073
    Y. Ho[46], 2013N/A2.2×1083.3
    J. Wenz[47], 20152×1022 ph·(0.1%bw)−1·sr−15×1075.2
    J. M. Cole[48], 20151.1×1021 ph·(0.1%bw)−1·sr−11.3×10933
    K. Huang[49], 2016N/A8×10875
    A. Dopp[50], 20181.6×109 ph·msr−1·s−11×108N/A
    J. Feng[36], 20191.8 ×1020 ph·msr−1·s−17 × 107N/A
    Y. F. Li[29], 2020N/A1013 ph·sr−1N/A
    X. F. Shen[31], 20213.3×1020 ph·msr−1·s−17×10115
    下载: 导出CSV
  • [1] Einstein A. On the special and general theory of relativity[J]. CPAE (English translation), 1917, 6: 247-420.
    [2] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449. doi: 10.1016/0030-4018(85)90151-8
    [3] 马文君, 刘志鹏, 王鹏杰, 等. 激光加速高能质子实验研究进展及新加速方案[J]. 物理学报, 2021, 70:084102 doi: 10.7498/aps.70.20202115

    Ma Wenjun, Liu Zhipeng, Wang Pengjie, et al. Experimental progress of laser-driven high-energy proton acceleration and new acceleration schemes[J]. Acta Physica Sinica, 2021, 70: 084102 doi: 10.7498/aps.70.20202115
    [4] 彭梓洋, 曹正轩, 高营, 等. 液体薄膜靶在激光驱动辐射源和激光离子加速中的应用[J]. 强激光与粒子束, 2022, 34:081003 doi: 10.11884/HPLPB202234.220107

    Peng Ziyang, Cao Zhengxuan, Gao Ying, et al. Application of liquid film targets in laser-driven radiation sources and laser ion acceleration[J]. High Power Laser and Particle Beams, 2022, 34: 081003 doi: 10.11884/HPLPB202234.220107
    [5] Albert F, Thomas A G R, Mangles S P D, et al. Laser wakefield accelerator based light sources: potential applications and requirements[J]. Plasma Physics and Controlled Fusion, 2014, 56: 084015. doi: 10.1088/0741-3335/56/8/084015
    [6] Albert F, Thomas A G R. Applications of laser wakefield accelerator-based light sources[J]. Plasma Physics and Controlled Fusion, 2016, 58: 103001. doi: 10.1088/0741-3335/58/10/103001
    [7] Corde S, Phuoc K T, Lambert G, et al. Femtosecond X rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48. doi: 10.1103/RevModPhys.85.1
    [8] Schlenvoigt H P, Haupt K, Debus A, et al. A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator[J]. Nature Physics, 2008, 4(2): 130-133. doi: 10.1038/nphys811
    [9] Pukhov A, Kiselev S, Kostyukov I, et al. Relativistic laser-plasma bubbles: new sources of energetic particles and X-rays[J]. Nuclear Fusion, 2004, 44(12): S191-S201. doi: 10.1088/0029-5515/44/12/S09
    [10] Kiselev S, Pukhov A, Kostyukov I. X-ray generation in strongly nonlinear plasma waves[J]. Physical Review Letters, 2004, 93: 135004. doi: 10.1103/PhysRevLett.93.135004
    [11] 陈民, 刘峰, 李博原, 等. 激光等离子体尾波加速器的发展和展望[J]. 强激光与粒子束, 2020, 32:092001 doi: 10.11884/HPLPB202032.200174

    Chen Min, Liu Feng, Li Boyuan, et al. Development and prospect of laser plasma wakefield accelerator[J]. High Power Laser and Particle Beams, 2020, 32: 092001 doi: 10.11884/HPLPB202032.200174
    [12] Pukhov A, Meyer-Ter-Vehn J. Laser wake field acceleration: the highly non-linear broken-wave regime[J]. Applied Physics B, 2002, 74(4): 355-361.
    [13] Jackson J D. Classical electrodynamics[M]. 3rd ed. New York: Wiley, 1999.
    [14] Wang Shuoqin, Clayton C E, Blue B E, et al. X-ray emission from betatron motion in a plasma wiggler[J]. Physical Review Letters, 2002, 88: 135004. doi: 10.1103/PhysRevLett.88.135004
    [15] Németh K, Shen Baifei, Li Yuelin, et al. Laser-driven coherent betatron oscillation in a laser-wakefield cavity[J]. Physical Review Letters, 2008, 100: 095002. doi: 10.1103/PhysRevLett.100.095002
    [16] Ta Phuoc K, Corde S, Shah R, et al. Imaging electron trajectories in a laser-wakefield cavity using betatron X-ray radiation[J]. Physical Review Letters, 2006, 97: 225002. doi: 10.1103/PhysRevLett.97.225002
    [17] Corde S, Thaury C, Phuoc K T, et al. Mapping the X-ray emission region in a laser-plasma accelerator[J]. Physical Review Letters, 2011, 107: 215004. doi: 10.1103/PhysRevLett.107.215004
    [18] Fourmaux S, Corde S, Ta Phuoc K, et al. Demonstration of the synchrotron-type spectrum of laser-produced Betatron radiation[J]. New Journal of Physics, 2011, 13: 033017. doi: 10.1088/1367-2630/13/3/033017
    [19] Schnell M, Sävert A, Landgraf B, et al. Deducing the electron-beam diameter in a laser-plasma accelerator using X-ray betatron radiation[J]. Physical Review Letters, 2012, 108: 075001. doi: 10.1103/PhysRevLett.108.075001
    [20] Feng Jie, Li Yifei, Geng Xiaotao, et al. Circularly polarized X-ray generation from an ionization induced laser plasma electron accelerator[J]. Plasma Physics and Controlled Fusion, 2020, 62: 105021. doi: 10.1088/1361-6587/abaf0b
    [21] Kneip S, McGuffey C, Martins J L, et al. Bright spatially coherent synchrotron X-rays from a table-top source[J]. Nature Physics, 2010, 6(12): 980-983. doi: 10.1038/nphys1789
    [22] Cipiccia S, Islam M R, Ersfeld B, et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake[J]. Nature Physics, 2011, 7(11): 867-871. doi: 10.1038/nphys2090
    [23] Ferri J, Corde S, Döpp A, et al. High-brilliance betatron γ-ray source powered by laser-accelerated electrons[J]. Physical Review Letters, 2018, 120: 254802. doi: 10.1103/PhysRevLett.120.254802
    [24] Lei Bifeng, Wang Jingwei, Kharin V, et al. γ-ray generation from plasma wakefield resonant wiggler[J]. Physical Review Letters, 2018, 120: 134801. doi: 10.1103/PhysRevLett.120.134801
    [25] Yu Tongpu, Pukhov A, Sheng Zhengming, et al. Bright betatronlike X rays from radiation pressure acceleration of a mass-limited foil target[J]. Physical Review Letters, 2013, 110: 045001. doi: 10.1103/PhysRevLett.110.045001
    [26] Lécz Z, Andreev A, Hafz N. Substantial enhancement of betatron radiation in cluster targets[J]. Physical Review E, 2020, 102: 053205. doi: 10.1103/PhysRevE.102.053205
    [27] Chen Liming, Yan Wenchao, Li D Z, et al. Bright betatron X-ray radiation from a laser-driven-clustering gas target[J]. Scientific Reports, 2013, 3: 1912. doi: 10.1038/srep01912
    [28] Dong Chuanfei, Zhao T Z, Behm K, et al. High flux femtosecond X-ray emission from the electron-hose instability in laser wakefield accelerators[J]. Physical Review Accelerators and Beams, 2018, 21: 041303. doi: 10.1103/PhysRevAccelBeams.21.041303
    [29] Li Yifei, Feng Jie, Tan Junhao, et al. Electron beam and betatron X-ray generation in a hybrid electron accelerator driven by high intensity picosecond laser pulses[J]. High Energy Density Physics, 2020, 37: 100859. doi: 10.1016/j.hedp.2020.100859
    [30] Tomkus V, Girdauskas V, Dudutis J, et al. Laser wakefield accelerated electron beams and betatron radiation from multijet gas targets[J]. Scientific Reports, 2020, 10: 16807. doi: 10.1038/s41598-020-73805-7
    [31] Shen Xiaofei, Pukhov A, Günther M M, et al. Bright betatron X-rays generation from picosecond laser interactions with long-scale near critical density plasmas[J]. Applied Physics Letters, 2021, 118: 134102. doi: 10.1063/5.0042997
    [32] Kozlova M, Andriyash I, Gautier J, et al. Hard X rays from laser-wakefield accelerators in density tailored plasmas[J]. Physical Review X, 2020, 10: 011061.
    [33] Corde S, Phuoc K T, Fitour R, et al. Controlled betatron X-ray radiation from tunable optically injected electrons[J]. Physical Review Letters, 2011, 107: 255003. doi: 10.1103/PhysRevLett.107.255003
    [34] Döpp A, Mahieu B, Lifschitz A, et al. Stable femtosecond X-rays with tunable polarization from a laser-driven accelerator[J]. Light: Science & Applications, 2017, 6: e17086.
    [35] Zhang Guobo, Chen Min, Yang Xiaohu, et al. Betatron radiation polarization control by using an off-axis ionization injection in a laser wakefield acceleration[J]. Optics Express, 2020, 28(20): 29927-29936. doi: 10.1364/OE.404723
    [36] Rao B S, Cho M H, Kim H T, et al. Optical shaping of plasma cavity for controlled laser wakefield acceleration[J]. Physical Review Research, 2020, 2: 043319. doi: 10.1103/PhysRevResearch.2.043319
    [37] Rousse A, Ta Phuoc K, Shah R, et al. Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction[J]. Physical Review Letters, 2004, 93: 135005. doi: 10.1103/PhysRevLett.93.135005
    [38] Kneip S, Nagel S R, Bellei C, et al. Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity[J]. Physical Review Letters, 2008, 100: 105006. doi: 10.1103/PhysRevLett.100.105006
    [39] Mangles S P D, Genoud G, Kneip S, et al. Controlling the spectrum of X-rays generated in a laser-plasma accelerator by tailoring the laser wavefront[J]. Applied Physics Letters, 2009, 95: 181106. doi: 10.1063/1.3258022
    [40] Thorn D B, Geddes C G R, Matlis N H, et al. Spectroscopy of betatron radiation emitted from laser-produced wakefield accelerated electrons[J]. Review of Scientific Instruments, 2010, 81: 10E325. doi: 10.1063/1.3479118
    [41] Genoud G, Cassou K, Wojda F, et al. Laser-plasma electron acceleration in dielectric capillary tubes[J]. Applied Physics B, 2011, 105(2): 309-316. doi: 10.1007/s00340-011-4639-4
    [42] Fourmaux S, Corde S, Phuoc K T, et al. Single shot phase contrast imaging using laser-produced betatron X-ray beams[J]. Optics Letters, 2011, 36(13): 2426-2428. doi: 10.1364/OL.36.002426
    [43] Ju Jinchuan, Svensson K, Döpp A, et al. Enhancement of X-rays generated by a guided laser wakefield accelerator inside capillary tubes[J]. Applied Physics Letters, 2012, 100: 191106. doi: 10.1063/1.4712594
    [44] Wang Xiaoming, Zgadzaj R, Fazel N, et al. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV[J]. Nature Communications, 2013, 4: 1988. doi: 10.1038/ncomms2988
    [45] Schnell M, Sävert A, Uschmann I, et al. Optical control of hard X-ray polarization by electron injection in a laser wakefield accelerator[J]. Nature Communications, 2013, 4: 2421. doi: 10.1038/ncomms3421
    [46] Ho Y C, Hung T S, Jhou J G, et al. Induction of electron injection and betatron oscillation in a plasma-waveguide-based laser wakefield accelerator by modification of waveguide structure[J]. Physics of Plasmas, 2013, 20: 083104. doi: 10.1063/1.4817294
    [47] Wenz J, Schleede S, Khrennikov K, et al. Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source[J]. Nature Communications, 2015, 6: 7568. doi: 10.1038/ncomms8568
    [48] Cole J M, Wood J C, Lopes N C, et al. Laser wakefield accelerators as hard X-ray sources for 3D medical imaging of human bone[J]. Scientific Reports, 2015, 5: 13244. doi: 10.1038/srep13244
    [49] Huang K, Li Y F, Li D Z, et al. Resonantly enhanced betatron hard X-rays from ionization injected electrons in a laser plasma accelerator[J]. Scientific Reports, 2016, 6: 27633. doi: 10.1038/srep27633
    [50] Döpp A, Hehn L, Götzfried J, et al. Quick X-ray microtomography using a laser-driven betatron source[J]. Optica, 2018, 5(2): 199-203. doi: 10.1364/OPTICA.5.000199
    [51] 张秋菊, 盛政明, 张杰. 周期量级超短激光脉冲在近临界密度等离子体中形成的光孤子[J]. 物理学报, 2004, 53(3):798-802 doi: 10.7498/aps.53.798

    Zhang Qiuju, Sheng Zhengming, Zhang Jie. Solitons formed by ultrashort laser pulses propagating in a plasma[J]. Acta Physica Sinica, 2004, 53(3): 798-802 doi: 10.7498/aps.53.798
    [52] Pukhov A, Sheng Z M, Meyer-Ter-Vehn J. Particle acceleration in relativistic laser channels[J]. Physics of Plasmas, 1999, 6(7): 2847-2854. doi: 10.1063/1.873242
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  1020
  • HTML全文浏览量:  249
  • PDF下载量:  206
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-18
  • 修回日期:  2022-09-13
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回