留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

10 W级主控振荡放大半导体激光芯片封装实验研究

谢鹏飞 雷军 张永刚 王丞乾 吕文强 王昭 杜维川 高松信

谢鹏飞, 雷军, 张永刚, 等. 10 W级主控振荡放大半导体激光芯片封装实验研究[J]. 强激光与粒子束, 2023, 35: 051001. doi: 10.11884/HPLPB202335.220235
引用本文: 谢鹏飞, 雷军, 张永刚, 等. 10 W级主控振荡放大半导体激光芯片封装实验研究[J]. 强激光与粒子束, 2023, 35: 051001. doi: 10.11884/HPLPB202335.220235
Xie Pengfei, Lei Jun, Zhang Yonggang, et al. Study of packaging in master oscillator power amplifier diode laser chip[J]. High Power Laser and Particle Beams, 2023, 35: 051001. doi: 10.11884/HPLPB202335.220235
Citation: Xie Pengfei, Lei Jun, Zhang Yonggang, et al. Study of packaging in master oscillator power amplifier diode laser chip[J]. High Power Laser and Particle Beams, 2023, 35: 051001. doi: 10.11884/HPLPB202335.220235

10 W级主控振荡放大半导体激光芯片封装实验研究

doi: 10.11884/HPLPB202335.220235
详细信息
    作者简介:

    谢鹏飞,xiepgf@126.com

  • 中图分类号: TN242

Study of packaging in master oscillator power amplifier diode laser chip

  • 摘要: 结温升高是影响主控振荡放大(MOPA)半导体激光芯片输出功率的重要因素,为解决MOPA芯片的多电极封装和高效散热问题,提出了一种正装和热扩散辅助次热沉相结合的封装结构。建立了该封装结构的3D热模型,对比研究了倒装封装结构、正装无辅助次热沉结构与正装有辅助次热沉结构对MOPA半导体激光器结温的影响。计算结果表明,采用正装有辅助次热沉结构与倒装封装结构散热性能接近,且显著优于正装无辅助次热沉结构,结温降低幅度最高可达40%。另外,采用正装有辅助次热沉封装结构的MOPA半导体激光芯片在连续工作条件下输出功率为10.5 W,谱宽可实现半高全宽小于0.1 nm,中心波长随电流的变化约14 pm/A,实现了10 W级MOPA芯片的封装,验证了该封装结构的有效性。
  • 图  1  MOPA芯片示意图[8]

    Figure  1.  Schematic of the MOPA diode laser[8]

    图  2  MOPA芯片结构示意图及封装示意图

    Figure  2.  Model of MOPA diode laser chip and packaging of the chip

    图  3  正装结构下的结温变化曲线

    Figure  3.  Curve of Tj in P-side up and N side with heat sink

    图  4  正装热扩散辅助次热沉与倒装结构对比

    Figure  4.  Curve of Tj between P-down and P-side up with heat spreader submount

    图  5  两种不同正装结构下的结温对比

    Figure  5.  Curve of Tj in two different structures with P-side up

    图  6  有源区结温随次热沉尺寸变化关系

    Figure  6.  Curve of Tj as submount dimension changes

    图  7  MOPA芯片封装实物

    Figure  7.  Picture of real product

    图  8  MOPA芯片测试装置及P-I输出曲线

    Figure  8.  Test picture of MOPA diode laser and curve of P-I

    图  9  MOPA芯片连续状态下的输出光谱和不同电流下的光谱变化

    Figure  9.  Spectrum of the MOPA diode laser in CW mode and the spectrum in different current

    表  1  材料参数

    Table  1.   Material parameters

    materialthermal conductivity/(W·m−1·K−1)coefficient of thermal expansion/(10−6 K−1)thickness/μmwidth/mm
    GaAs556.41201.0
    AlN2304.55004.5
    W90Cu101804.51000~30002.0~4.5
    下载: 导出CSV
  • [1] 孙胜明, 范杰, 徐莉, 等. 锥形半导体激光器研究进展[J]. 中国光学, 2019, 12(1):48-58 doi: 10.3788/co.20191201.0048

    Sun Shengming, Fan Jie, Xu Li, et al. Progress of tapered semiconductor diode lasers[J]. Chinese Optics, 2019, 12(1): 48-58 doi: 10.3788/co.20191201.0048
    [2] 吴涛, 郭栓银. 980 nm高功率锥形激光器巴条的制备及光电特性[J]. 激光与光电子学进展, 2016, 53:041401

    Wu Tao, Guo Shuanyin. Fabrication and electro-optic properties of 980 nm high-power tapered laser bar[J]. Laser & Optoelectronics Progress, 2016, 53: 041401
    [3] Albrodt P, Jamal M T, Hansen A K, et al. Recent progress in brightness scaling by coherent beam combining of tapered amplifiers for efficient high power frequency doubling[C]//Proceedings of SPIE 10900, High-Power Diode Laser Technology XVII. 2019: 109000O.
    [4] Müller A, Fricke J, Bugge F, et al. DBR tapered diode laser at 1030 nm with nearly diffraction-limited narrowband emission and 12.7 W of optical output power[C]//Proceedings of SPIE 9767, Novel In-Plane Semiconductor Lasers XV. 2016: 97671I.
    [5] Müller A, Zink C, Fricke J, et al. Efficient, high brightness 1030 nm DBR tapered diode lasers with optimized lateral layout[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23: 1501107.
    [6] Müller A, Fricke J, Bugge F, et al. DBR tapered diode laser with 12.7 W output power and nearly diffraction-limited, narrowband emission at 1030 nm[J]. Applied Physics B, 2016, 122: 87.
    [7] Fiebig C, Blume G, Kaspari C. 12W high-brightness single-frequency DBR tapered diode laser[J]. Electronics Letters, 2008, 44(21): 1253-1255. doi: 10.1049/el:20081371
    [8] Zink C, Maaβdorf A, Fricke J, et al. Diffraction limited 1064nm monolithic DBR-master oscillator power amplifier with more than 7W output power[C]//Proceedings of SPIE 10553, Novel In-Plane Semiconductor Lasers XVII. 2018: 105531C.
    [9] Tawfieq M, Wenzel H, Della Casa P, et al. High-power sampled-grating-based master oscillator power amplifier system with 23.5 nm wavelength tuning around 970 nm[J]. Applied Optics, 2018, 57(29): 8680-8685. doi: 10.1364/AO.57.008680
    [10] 张建伟, 宁永强, 张星, 等. 基于载流子注入产热机制的半导体激光器热模型分析[J]. 中国激光, 2012, 39:1002003 doi: 10.3788/CJL201239.1002003

    Zhang Jianwei, Ning Yongqiang, Zhang Xing, et al. Analysis of the thermal model based on the carrier injection mechanisms within the semiconductor laser[J]. Chinese Journal of Lasers, 2012, 39: 1002003 doi: 10.3788/CJL201239.1002003
    [11] Wu Yulong, Dong Zhiyong, Chen Yongqi, et al. Beam shaping for kilowatt fiber-coupled diode lasers by using one-step beam cutting-rotating of prisms[J]. Applied Optics, 2016, 55(34): 9769-9773. doi: 10.1364/AO.55.009769
    [12] Wu Dihai, Zah C E, Liu Xingsheng. Thermal design for the package of high-power single-emitter laser diodes[J]. Optics & Laser Technology, 2020, 129: 106266.
    [13] Mostallino R, Garcia M, Deshayes Y, et al. Thermal investigation on high power dfb broad area lasers at 975nm, with 60% efficiency[C]//Proceedings of SPIE 9733, High-Power Diode Laser Technology and Applications XIV. 2016: 97330S.
    [14] Fang Junyu, Zhang He, Zou Yonggang, et al. Thermal management of a semiconductor laser array based on a graphite heat sink[J]. Applied Optics, 2019, 58(28): 7708-7715. doi: 10.1364/AO.58.007708
    [15] 王娇娇, 石琳琳, 马晓辉, 等. 多单管堆叠半导体激光器热分析及光纤耦合模拟仿真设计[J]. 发光学报, 2021, 42(1):104-110 doi: 10.37188/CJL.20200243

    Wang Jiaojiao, Shi Linlin, Ma Xiaohui, et al. Thermal analysis and fiber coupling simulation design of multi-single emitters stacked semiconductor laser[J]. Chinese Journal of Luminescence, 2021, 42(1): 104-110 doi: 10.37188/CJL.20200243
    [16] Missaggia L J, Huang R K, Chann B, et al. High-power slab-coupled optical waveguide laser array packaging for beam combining[C]//Proceedings of SPIE 6478, Photonics Packaging, Integration, and Interconnects VII. 2007: 647806.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  575
  • HTML全文浏览量:  227
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-27
  • 修回日期:  2023-02-22
  • 录用日期:  2023-02-22
  • 网络出版日期:  2023-03-11
  • 刊出日期:  2023-04-07

目录

    /

    返回文章
    返回