留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熔石英等光学材料激光损伤疲劳效应

朱景国 田野 杨英 张鑫 郑胜亨 王德恩 韩伟

朱景国, 田野, 杨英, 等. 熔石英等光学材料激光损伤疲劳效应[J]. 强激光与粒子束, 2023, 35: 071002. doi: 10.11884/HPLPB202335.220245
引用本文: 朱景国, 田野, 杨英, 等. 熔石英等光学材料激光损伤疲劳效应[J]. 强激光与粒子束, 2023, 35: 071002. doi: 10.11884/HPLPB202335.220245
Zhu Jingguo, Tian Ye, Yang Ying, et al. Review on laser damage fatigue effects of fused silica and other optical materials[J]. High Power Laser and Particle Beams, 2023, 35: 071002. doi: 10.11884/HPLPB202335.220245
Citation: Zhu Jingguo, Tian Ye, Yang Ying, et al. Review on laser damage fatigue effects of fused silica and other optical materials[J]. High Power Laser and Particle Beams, 2023, 35: 071002. doi: 10.11884/HPLPB202335.220245

熔石英等光学材料激光损伤疲劳效应

doi: 10.11884/HPLPB202335.220245
详细信息
    作者简介:

    朱景国,zhujg9077@foxmail.com

    通讯作者:

    韩 伟,tonyhan2000@163.com

  • 中图分类号: O437

Review on laser damage fatigue effects of fused silica and other optical materials

  • 摘要:

    以熔石英材料为主,以几种典型(铌酸铋晶体、三硼酸锂晶体和HfO2/SiO2多层膜)的光学材料为辅,介绍了其疲劳效应的主要表现;总结了激光波长、光斑直径、激光频率和材料位置对疲劳效应的影响;介绍了疲劳效应的两种模式:统计性的假疲劳和材料改性的真疲劳;介绍了疲劳效应的三种主要的机理解释:吸收缺陷模型、化学键断裂模型、色心模型;比较了疲劳实验中两种实验模式,并指出了两者的优缺点和适用研究对象。调研表明,对于不同类型的材料,使用不同的激光波长或其他差异条件,就有可能有不同的疲劳现象、源于不同的疲劳机理。

  • 图  1  几种材料的疲劳效应示意图

    Figure  1.  Schematic diagram of fatigue effect of several materials

    图  2  紫外条件下波长对疲劳效应的影响

    Figure  2.  Influence of wavelength on fatigue effect under ultraviolet condition

    图  3  石英体内和表面在10 Hz时疲劳效应的区别

    Figure  3.  Evolution of fatigue effect at 10 Hz for silica surface and bulk

    图  4  激光辐照频率对10发辐照后损伤概率的影响

    Figure  4.  Frequency effect on the laser damage probability after 10 subsequent shots

    图  5  在不同泵浦激光脉宽下,入射能量和损伤所需发次的关系

    Figure  5.  Relationship between incident energy and the number of pulses before damage at various pump pulse durations

    图  6  不同波长下疲劳效应的表现

    Figure  6.  Fatigue effects at different wavelengths

    图  7  不同激光通量下材料发生损伤所需的次数关系图

    Figure  7.  Relation diagram of the number of pulses to induce damage in materials at different laser fluence

    图  8  熔石英诱导吸收的弛豫

    Figure  8.  Relaxation of induced absorption in fused silica

    图  9  疲劳效应的弛豫实验

    Figure  9.  Relaxation test of fatigue effect

    图  10  在532 nm波长下HfO2/SiO2高反射涂层的损伤显微形貌

    Figure  10.  Damage micromorphologies of HfO2/SiO2 high reflection coatings at 532 nm

    图  11  熔石英的吸收率随激光辐照次数的提升

    Figure  11.  Absorption coefficient of fused silica increases with the shots

    图  12  在固定的电场E下,激光辐照1和3次后,辐照区的电子密度Ne/Ncr和温度Ti的快照

    Figure  12.  In the fixed electric field E, electron density and temperature snapshots of the irradiated regions subject to one pulse N = 1 and few pulses N = 3 irradiation. The electron density is normalized to the critical value Ncr

    图  13  熔石英内几种缺陷的数量随激光激励次数的增加而增加

    Figure  13.  Number of several types of defects in fused silica increases with the increase of laser excitation times

    图  14  800次辐照后,玻璃二氧化硅中环分布的演化

    Figure  14.  Evolution in the distribution of rings in v-SiO2 after 800 times irradiation

  • [1] 唐晓军, 王钢, 刘娇, 等. 高亮度固体激光器技术发展研究[J]. 中国工程科学, 2020, 22(3):49-55

    Tang Xiaojun, Wang Gang, Liu Jiao, et al. Development of high brightness solid-state laser technology[J]. Strategic Study of CAE, 2020, 22(3): 49-55
    [2] 张国书. 核聚变能源的开发现状及新进展[J]. 中国核电, 2018, 11(1):30-34

    Zhang Guoshu. Status and recent progress in the development of nuclear fusion energy[J]. China Nuclear Power, 2018, 11(1): 30-34
    [3] 肖凯博, 袁晓东, 蒋新颖, 等. 美国LIFE计划激光驱动器概念设计研究现状[J]. 激光与光电子学进展, 2015, 52:040001

    Xiao Kaibo, Yuan Xiaodong, Jiang Xinying, et al. Research status of conceptual design of diode-pumped solid-state laser driver for LIFE[J]. Laser & Optoelectronics Progress, 2015, 52: 040001
    [4] Baufeld B, Dutilleul T. Electron beam welding of large components for the nuclear industry[J]. MATEC Web of Conferences, 2019, 269: 02009. doi: 10.1051/matecconf/201926902009
    [5] Schultz V, Cho W I, Merkel A, et al. Deep penetration laser welding with high seam surface quality due to buttonhole welding[C]//IIW 2018 Annual Assembly and International Conference. 2018.
    [6] Natoli J Y, Bertussi B, Commandré M. Effect of multiple laser irradiations on silica at 1064 and 355 nm[J]. Optics Letters, 2005, 30(11): 1315-1317. doi: 10.1364/OL.30.001315
    [7] Douti D B L, Gallais L, Commandré M. Laser-induced damage of optical thin films submitted to 343, 515, and 1030 nm multiple subpicosecond pulses[J]. Optical Engineering, 2014, 53: 122509. doi: 10.1117/1.OE.53.12.122509
    [8] Wagner F R, Hildenbrand A, Natoli J Y, et al. Multiple pulse nanosecond laser induced damage study in LiB3O5 crystals[J]. Optics Express, 2010, 18(26): 26791-26798. doi: 10.1364/OE.18.026791
    [9] Liu W W, Wei C Y, Wu J B, et al. Investigations on single and multiple pulse laser-induced damages in HfO2/SiO2 multilayer dielectric films at 1064 nm[J]. Optics Express, 2013, 21(19): 22476-22487. doi: 10.1364/OE.21.022476
    [10] Kitriotis D, Merkle L D. Multiple pulse laser-induced damage phenomena in silicates[J]. Applied Optics, 1989, 28(5): 949-958. doi: 10.1364/AO.28.000949
    [11] Wagner F R, Gouldieff C, Natoli J Y. Contrasted material responses to nanosecond multiple-pulse laser damage: from statistical behavior to material modification[J]. Optics Letters, 2013, 38(11): 1869-1871. doi: 10.1364/OL.38.001869
    [12] Wagner F R, Natoli J Y, Beaudier A, et al. Nanosecond multiple pulse measurements and the different types of defects[C]//Proceedings of SPIE 10447, Laser-Induced Damage in Optical Materials. 2017: 1044719.
    [13] Gouldieff C, Wagner F, Natoli J Y. Nanosecond UV laser-induced fatigue effects in the bulk of synthetic fused silica: a multi-parameter study[J]. Optics Express, 2015, 23(3): 2962-2972. doi: 10.1364/OE.23.002962
    [14] Rosenfeld A, Lorenz M, Stoian R, et al. Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation[J]. Applied Physics A, 1999, 69(S1): S373-S376.
    [15] Natoli J Y, Capoulade J, Bertussi B, et al. Need to define a functional LIDT in multiple irradiation cases: examples of silica and KDP at 1064 nm and 355 nm[C]//Proceedings of SPIE 5991, Laser-Induced Damage in Optical Materials. 2005: 599109.
    [16] Momgaudis B, Smalakys L, Vengris M, et al. Optical fatigue investigation with in situ time resolved digital holography[C]//Proceedings of SPIE 11173, Laser-induced Damage in Optical Materials. 2019: 111730A.
    [17] Ke K, Chen J, Gao F, et al. Study of UV repetition laser-induced absorption on fused silica surface using a surface thermal lensing technique[J]. Optics Letters, 2020, 45(8): 2379-2382. doi: 10.1364/OL.391833
    [18] Zhurkov S N, Petrov V A, Kondyrev A M, et al. Thermofluctuation nature of optical resistance of transparent solids[J]. Philosophical Magazine B, 1988, 57(2): 307-317. doi: 10.1080/13642818808201624
    [19] Bass M, Barrett H. Avalanche breakdown and the probabilistic nature of laser-induced damage[J]. IEEE Journal of Quantum Electronics, 1972, 8(3): 338-343. doi: 10.1109/JQE.1972.1076971
    [20] Schrameyer S, Jupé M, Jensen L, et al. Algorithm for cumulative damage probability calculations in S-on-1 laser damage testing[C]//Proceedings of SPIE 8885, Laser-Induced Damage in Optical Materials. 2013: 88851J.
    [21] Jensen L, Mrohs M, Gyamfi M, et al. Lowering evaluation uncertainties in laser-induced damage testing[C]//Proceedings of SPIE 9632, Laser-Induced Damage in Optical Materials. 2015: 96321J.
    [22] Liu Wenwen, Wei Chaoyang, Yi Kui, et al. Multiscale analysis of single- and multiple-pulse laser-induced damages in HfO2/SiO2 multilayer dielectric films at 532 nm[J]. Chinese Optics Letters, 2015, 13: 091404. doi: 10.3788/COL201513.091404
    [23] Becker S, Pereira A, Bouchut P, et al. Accelerated low fluence laser ageing of AR coatings[C]//Proceedings of SPIE 5991, Laser-Induced Damage in Optical Materials. 2005: 59910M.
    [24] Wagner F R, Gouldieff C, Natoli J Y, et al. Nanosecond multi-pulse laser-induced damage mechanisms in pure and mixed oxide thin films[J]. Thin Solid Films, 2015, 592: 225-231. doi: 10.1016/j.tsf.2015.04.014
    [25] Eva E, Mann K. Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet-window materials[J]. Applied Physics A, 1996, 62(2): 143-149.
    [26] Chambonneau M, Diaz R, Grua P, et al. Origin of the damage ring pattern in fused silica induced by multiple longitudinal modes laser pulses[J]. Applied Physics Letters, 2014, 104: 021121. doi: 10.1063/1.4861748
    [27] 李雨菡, 肖华攀, 王海容, 等. 湿法刻蚀处理熔石英光学元件研究进展[J]. 激光与光电子学进展, 2021, 58:1516026

    Li Yuhan, Xiao Huapan, Wang Hairong, et al. Review on wet etching technique of fused silica optical elements[J]. Laser & Optoelectronics Progress, 2021, 58: 1516026
    [28] Rudenko A, Colombier J P, Itina T E, et al. Genesis of nanogratings in silica bulk via multipulse interplay of ultrafast photo-excitation and hydrodynamics[J]. Advanced Optical Materials, 2021, 9: 2100973. doi: 10.1002/adom.202100973
    [29] Wootton A, Thomas B, Harrowell P. Radiation-induced densification in amorphous silica: a computer simulation study[J]. The Journal of Chemical Physics, 2001, 115(7): 3336-3341. doi: 10.1063/1.1387039
    [30] Zheng Lianqing, Lambropoulos J C, Schmid A W. Molecular dynamics study of UV-laser-induced densification of fused silica. II. Effects of laser pulse duration, pressure, and temperature, and comparison with pressure-induced densification[J]. Journal of Non-Crystalline Solids, 2005, 351(40/42): 3271-3278.
    [31] Shcheblanov N S, Povarnitsyn M E, Mishchik K N, et al. Raman spectroscopy of femtosecond multipulse irradiation of vitreous silica: experiment and simulation[J]. Physical Review B, 2018, 97: 054106. doi: 10.1103/PhysRevB.97.054106
    [32] Chmel A E. Fatigue laser-induced damage in transparent materials[J]. Materials Science and Engineering: B, 1997, 49(3): 175-190. doi: 10.1016/S0921-5107(97)00138-4
    [33] Tian Ye, Du Jincheng, Zu Xiaotao, et al. UV-induced modification of fused silica: insights from ReaxFF-based molecular dynamics simulations[J]. AIP Advances, 2016, 6: 095312. doi: 10.1063/1.4963204
    [34] Shcheblanov N S, Povarnitsyn M E. Bond-breaking mechanism of vitreous silica densification by IR femtosecond laser pulses[J]. Europhysics Letters, 2016, 114: 26004. doi: 10.1209/0295-5075/114/26004
    [35] Pasquarello A, Car R. Identification of Raman defect lines as signatures of ring structures in vitreous silica[J]. Physical Review Letters, 1998, 80(23): 5145-5147. doi: 10.1103/PhysRevLett.80.5145
    [36] Emmert L A, Mero M, Rudolph W. Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses[J]. Journal of Applied Physics, 2010, 108: 043523. doi: 10.1063/1.3457791
    [37] Tanimura K, Tanaka T, Itoh N. Creation of quasistable lattice defects by electronic excitation in SiO2[J]. Physical Review Letters, 1983, 51(5): 423-426. doi: 10.1103/PhysRevLett.51.423
    [38] Guizard S, Martin P, Petite G, et al. Time-resolved study of laser-induced colour centres in SiO2[J]. Journal of Physics: Condensed Matter, 1996, 8(9): 1281-1290. doi: 10.1088/0953-8984/8/9/018
    [39] Jürgens P, Vrakking M J J, Husakou A, et al. Plasma formation and relaxation dynamics in fused silica driven by femtosecond short-wavelength infrared laser pulses[J]. Applied Physics Letters, 2019, 115: 191903. doi: 10.1063/1.5117837
    [40] Velpula P K, Bhuyan M K, Courvoisier F, et al. Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring[J]. Laser & Photonics Reviews, 2016, 10(2): 230-244.
  • 加载中
图(14)
计量
  • 文章访问数:  422
  • HTML全文浏览量:  156
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-10
  • 修回日期:  2023-02-12
  • 录用日期:  2023-01-12
  • 网络出版日期:  2023-04-14
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回