留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

7~8 MA条件下MagLIF集成实验关键问题理论研究与设计

肖德龙 王小光 王冠琼 毛重阳 孙顺凯

肖德龙, 王小光, 王冠琼, 等. 7~8 MA条件下MagLIF集成实验关键问题理论研究与设计[J]. 强激光与粒子束, 2023, 35: 022001. doi: 10.11884/HPLPB202335.220253
引用本文: 肖德龙, 王小光, 王冠琼, 等. 7~8 MA条件下MagLIF集成实验关键问题理论研究与设计[J]. 强激光与粒子束, 2023, 35: 022001. doi: 10.11884/HPLPB202335.220253
Xiao Delong, Wang Xiaoguang, Wang Guanqiong, et al. Theoretical research on key issues and design of integrated MagLIF experiments on the 7−8 MA facility[J]. High Power Laser and Particle Beams, 2023, 35: 022001. doi: 10.11884/HPLPB202335.220253
Citation: Xiao Delong, Wang Xiaoguang, Wang Guanqiong, et al. Theoretical research on key issues and design of integrated MagLIF experiments on the 7−8 MA facility[J]. High Power Laser and Particle Beams, 2023, 35: 022001. doi: 10.11884/HPLPB202335.220253

7~8 MA条件下MagLIF集成实验关键问题理论研究与设计

doi: 10.11884/HPLPB202335.220253
基金项目: 国家自然科学基金项目(12175022,11775032,51790522)
详细信息
    作者简介:

    肖德龙,xiao_delong@iapcm.ac.cn

  • 中图分类号: O532

Theoretical research on key issues and design of integrated MagLIF experiments on the 7−8 MA facility

  • 摘要: 针对国内7~8 MA脉冲功率装置驱动条件,通过耦合等效电路模型和McBride等人发展的半解析模型,研究了MagLIF总体能量学过程及中子产额随关键参数的变化规律,获得了中子产额大于1010的参数设计区间。结果表明:7~8 MA驱动条件、套筒材料、负载高度、燃料半径与密度、预热能量、外加轴向磁场等多因素共同决定了燃料的最终压缩状态;预热能量越大,燃料初始升温以及滞止时刻升温越高,中子产额越高;轴向磁场增加,热传导能量损失减小,但燃料收缩比也会减小,因此存在优化轴向磁场以获得较高中子产额;杂质质量分数超过10%,中子产额开始显著下降。燃料密度0.7 mg/cm3、外加轴向磁场27 T、预热能量200 J、杂质质量分数小于50%的条件下,可以获得3.5×1010中子产额,从而有望在7~8 MA条件下建立MagLIF关键问题研究平台。
  • 图  1  MagLIF构型横截面示意图

    Figure  1.  Schematic of MagLIF cross section

    图  2  等效电路模型

    Figure  2.  Simplified equivalent circuit model

    图  3  套筒内爆轨迹及驱动电流波形

    Figure  3.  Liner trajectories and the simulated drive current

    图  4  套筒、燃料区平均温度以及中子产生速率时间变化曲线

    Figure  4.  Variation of averaged liner and fuel temperatures and neutron production rate with time

    图  5  套筒区各能量项时间变化

    Figure  5.  Variation of energy terms with time in liner

    图  6  燃料区各能量项时间变化

    Figure  6.  Variation of energy terms in fuel

    图  7  中子产额和燃料峰值温度随燃料初始密度的变化

    Figure  7.  Variation of neutron yield and peak fuel temperature with initial fuel density

    图  8  中子产额和峰值电流随负载高度的变化

    Figure  8.  Variation of neutron yield and peak current with initial load height

    图  9  中子产额、收缩比、套筒对燃料pdV做功、热传导能量损失及燃料峰值温度随外加轴向磁场的变化

    Figure  9.  Variation of simulated parameters with initial axial magnetic field

    图  10  中子产额和燃料峰值温度随预热能量的变化

    Figure  10.  Variation of neutron yield and peak fuel temperature with preheating energy

    图  11  中子产额和套筒对燃料pdV做功随套筒纵横比的变化

    Figure  11.  Variation of neutron yield and pdV work to fuel with aspect ratio

    图  12  归一化中子产额随Be杂质质量分数的变化

    Figure  12.  Variation of normalized neutron yield with mass ratio of beryllium impurity

    图  13  不考虑燃料混合时中子产额随初始轴向磁场和燃料密度的变化

    Figure  13.  Contours of neutron yield with initial axial magnetic field and fuel density without fuel mixing

    图  14  杂质质量分数50%时中子产额随初始轴向磁场和燃料密度的变化

    Figure  14.  Contours of neutron yield with initial axial magnetic field and fuel density with 50% fuel mix

    图  15  采用Be和Al套筒时的中子产额随杂质质量分数的变化

    Figure  15.  Variation of neutron yield with impurity mass ratio using beryllium and aluminum liners

  • [1] Ryutov D D, Derzon M S, Matzen M K. The physics of fast Z pinches[J]. Rev Mod Phys, 2000, 72(1): 167-223. doi: 10.1103/RevModPhys.72.167
    [2] Haines M G. A review of the dense Z-pinch[J]. Plasma Phys Control Fusion, 2011, 53: 093001. doi: 10.1088/0741-3335/53/9/093001
    [3] Deeney C, Douglas M R, Spielman R B, et al. Enhancement of X-ray power from a Z pinch using nested-wire arrays[J]. Phys Rev Lett, 1998, 81(22): 4883-4886. doi: 10.1103/PhysRevLett.81.4883
    [4] Bailey J E, Chandler G A, Mancini R C, et al. Dynamic hohlraum radiation hydrodynamics[J]. Phys Plasmas, 2006, 13: 056301. doi: 10.1063/1.2177640
    [5] Rochau G A, Bailey J E, Chandler G A, et al. High performance capsule implosions driven by the Z-pinch dynamic hohlraum[J]. Plasma Phys Control Fusion, 2007, 49(12B): 591-600. doi: 10.1088/0741-3335/49/12B/S55
    [6] Gomez M R, Slutz S A, Jennings C A, et al. Performance scaling in magnetized liner inertial fusion experiments[J]. Phys Rev Lett, 2020, 125: 155002. doi: 10.1103/PhysRevLett.125.155002
    [7] Slutz S A, Herrmann M C, Vesey R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Phys Plasmas, 2010, 17: 056303. doi: 10.1063/1.3333505
    [8] Slutz S A, Vesey R A. High-gain magnetized inertial fusion[J]. Phys Rev Lett, 2012, 108: 025003. doi: 10.1103/PhysRevLett.108.025003
    [9] Cuneo M E, Herrmann M C, Sinars D B, et al. Magnetically driven implosions for inertial confinement fusion at Sandia National Laboratories[J]. IEEE Trans Plasma Sci, 2012, 40(12): 3222-3245. doi: 10.1109/TPS.2012.2223488
    [10] Gomez M R, Slutz S A, Sefkow A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion[J]. Phys Rev Lett, 2014, 113: 155003. doi: 10.1103/PhysRevLett.113.155003
    [11] Sinars D B, Slutz S A, Herrmann M C, et al. Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid metal liners[J]. Phys Plasmas, 2011, 18: 056301. doi: 10.1063/1.3560911
    [12] Harvey-Thompson A J, Weis M R, Harding E C, et al. Diagnosing and mitigating laser preheat induced mix in MagLIF[J]. Phys Plasmas, 2018, 25: 112705. doi: 10.1063/1.5050931
    [13] Harvey-Thompson A J, Geissel M, Jennings C A, et al. Constraining preheat energy deposition in MagLIF experiments with multi-frame shadowgraphy[J]. Phys Plasmas, 2019, 26: 032707. doi: 10.1063/1.5086044
    [14] Knapp P F, Gomez M R, Hansen S B, et al. Origins and effects of mix on magnetized liner inertial fusion target performance[J]. Phys Plasmas, 2019, 26: 012704. doi: 10.1063/1.5064548
    [15] Slutz S A, Jennings C A, Awe T J, et al. Auto-magnetizing liners for magnetized inertial fusion[J]. Phys Plasmas, 2017, 24: 012704. doi: 10.1063/1.4973551
    [16] Slutz S A, Gomez M R, Hansen S B, et al. Enhancing performance of magnetized liner inertial fusion at the Z facility[J]. Phys Plasmas, 2018, 25: 112706. doi: 10.1063/1.5054317
    [17] Stygar W A, Awe T J, Bailey J E, et al. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments[J]. Phys Rev ST Accel Beams, 2015, 18: 110401. doi: 10.1103/PhysRevSTAB.18.110401
    [18] Grabovski E V, Aleksandrov V V, Gritsuk A N, et al. Wire array investigation on Angara-5-1 and Baikal project[C]//Proceedings of 2013 Abstracts IEEE International Conference on Plasma Science. 2013.
    [19] 肖德龙, 孙顺凯, 薛创, 等. Z箍缩动态黑腔形成过程和关键影响因素数值模拟研究[J]. 物理学报, 2015, 64:235203 doi: 10.7498/aps.64.235203

    Xiao Delong, Sun Shunkai, Xue Chuang, et al. Numerical studies on the formation process of Z-pinch dynamic hohlraums and key issues of optimizing dynamic hohlraum radiation[J]. Acta Phys Sin, 2015, 64: 235203 doi: 10.7498/aps.64.235203
    [20] Meng Shijian, Hu Qingyuan, Nin Jiaming, et al. Measurement of axial radiation properties in Z-pinch dynamic hohlraum at Julong-1[J]. Phys Plasmas, 2017, 24: 014505. doi: 10.1063/1.4974771
    [21] Xiao Delong, Ye Fan, Meng Shijian, et al. Preliminary investigation on the radiation transfer in dynamic hohlraums on the PTS facility[J]. Phys Plasmas, 2017, 24: 092701. doi: 10.1063/1.4994331
    [22] Huang Xianbin, Ren Xiaodong, Dan Jiakun, et al. Radiation characteristics and implosion dynamics of Z-pinch dynamic hohlraums performed on PTS facility[J]. Phys Plasmas, 2017, 24: 092704. doi: 10.1063/1.4998619
    [23] 肖德龙, 戴自换, 孙顺凯, 等. Z箍缩动态黑腔驱动靶丸内爆动力学[J]. 物理学报, 2018, 67:025203 doi: 10.7498/aps.67.20171640

    Xiao Delong, Dai Zihuan, Sun Sunkai, et al. Numerical studies on dynamics of Z-pinch dynamic hohlraum driven target implosion[J]. Acta Phys Sin, 2018, 67: 025203 doi: 10.7498/aps.67.20171640
    [24] Yi Qiang, Guo Hongsheng, Hu Qingyuan, et al. On the bremsstrahlung background of the neutron yield diagnostic in deuterium-filled capsule implosions driven by Z-pinch dynamic hohlraums on an 8-MA pulsed power facility[J]. Phys Plasmas, 2020, 27: 102709. doi: 10.1063/5.0020558
    [25] 赵海龙, 张恒第, 王刚华, 等. 一维磁化套筒惯性聚变模拟程序的设计与校验[J]. 强激光与粒子束, 2017, 29:072001 doi: 10.11884/HPLPB201729.170002

    Zhao Hailong, Zhang Hengdi, Wang Ganghua, et al. Design and verification of 1D magnetized linear inertial fusion simulation code[J]. High Power Laser Particle Beams, 2017, 29: 072001 doi: 10.11884/HPLPB201729.170002
    [26] 赵海龙, 王刚华, 王强, 等. 磁化套筒惯性聚变初步探索研究与实验可行性分析[J]. 强激光与粒子束, 2020, 32:062002 doi: 10.11884/HPLPB202032.190352

    Zhao Hailong, Wang Ganghua, Wang Qiang, et al. Preliminary exploration of MagLIF concept and feasibility analysis on PTS facility[J]. High Power Laser Particle Beams, 2020, 32: 062002 doi: 10.11884/HPLPB202032.190352
    [27] McBride R D, Slutz S A. A semi-analytic model of magnetized liner inertial fusion[J]. Phys Plasmas, 2015, 22: 052708. doi: 10.1063/1.4918953
    [28] McBride R D, Slutz S A, Vesey R A, et al. Exploring magnetized liner inertial fusion with a semi-analytic model[J]. Phys Plasmas, 2016, 23: 012705. doi: 10.1063/1.4939479
    [29] 薛创, 丁宁, 肖德龙, 等. 聚龙一号驱动Z箍缩负载内爆的简化电路模型[J]. 强激光与粒子束, 2016, 28:125004 doi: 10.11884/HPLPB201628.160138

    Xue Chuang, Ding Ning, Xiao Delong, et al. Lumped circuit model for the PTS driving Z pinch load implosion[J]. High Power Laser Particle Beams, 2016, 28: 125004 doi: 10.11884/HPLPB201628.160138
    [30] Braginskii S I. Transport processes in a plasma[M]//Leontovich M A. Reviews of Plasma Physics. New York: Consultants Bureau, 1965: 249-253.
    [31] Atzeni S, Meyer-ter-Vehn J. 惯性聚变物理[M]. 沈百飞, 译. 北京: 科学出版社, 2008: 14-15

    Atzeni S, Meyer-ter-Vehn J. Physics of inertial fusion[M]. Shen Baifei, trans. Beijing: Science Press, 2008: 14-15
    [32] Deng Jianjun, Xie Weiping, Feng Shuping, et al. From concept to reality—a review to the primary test stand and its preliminary application in high energy density physics[J]. Matter Radiat Extremes, 2016, 1(1): 48-58. doi: 10.1016/j.mre.2016.01.004
    [33] Lau Y Y, Zier J C, Rittersdorf I M, et al. Anisotropy and feedthrough in magneto-Rayleigh-Taylor instability[J]. Phys Rev E, 2011, 83: 066405. doi: 10.1103/PhysRevE.83.066405
    [34] Wang Xiaoguang, Wang Guanqiong, Sun Shunkai, et al. Scaling of rise time of drive current on development of magneto-Rayleigh–Taylor instabilities for single-shell Z-pinches[J]. Chin Phys B, 2022, 31: 025203. doi: 10.1088/1674-1056/ac1fd9
  • 加载中
图(15)
计量
  • 文章访问数:  561
  • HTML全文浏览量:  236
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-18
  • 修回日期:  2022-10-12
  • 录用日期:  2022-10-27
  • 网络出版日期:  2022-10-31
  • 刊出日期:  2023-01-14

目录

    /

    返回文章
    返回