留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相对论涡旋高次谐波的产生与调控理论研究

王剑 吴家鑫 谢端 蔡达锋 李东霞

王剑, 吴家鑫, 谢端, 等. 相对论涡旋高次谐波的产生与调控理论研究[J]. 强激光与粒子束, 2023, 35: 051003. doi: 10.11884/HPLPB202335.220256
引用本文: 王剑, 吴家鑫, 谢端, 等. 相对论涡旋高次谐波的产生与调控理论研究[J]. 强激光与粒子束, 2023, 35: 051003. doi: 10.11884/HPLPB202335.220256
Wang Jian, Wu Jiaxin, Xie Duan, et al. Theoretical investigation of relativistic vortex high-order harmonics generation and manipulation[J]. High Power Laser and Particle Beams, 2023, 35: 051003. doi: 10.11884/HPLPB202335.220256
Citation: Wang Jian, Wu Jiaxin, Xie Duan, et al. Theoretical investigation of relativistic vortex high-order harmonics generation and manipulation[J]. High Power Laser and Particle Beams, 2023, 35: 051003. doi: 10.11884/HPLPB202335.220256

相对论涡旋高次谐波的产生与调控理论研究

doi: 10.11884/HPLPB202335.220256
基金项目: 湖南省教育厅科学研究项目重点项目(20A042);国家大学生创新创业计划项目(X2020012)
详细信息
    作者简介:

    王 剑,abie007@163.com

  • 中图分类号: O539

Theoretical investigation of relativistic vortex high-order harmonics generation and manipulation

  • 摘要: 目前,具有螺旋相位波前和环状光强分布的涡旋光束已在光学领域获得了广泛应用,其产生与调控自然成了研究的热点。利用三维粒子模拟程序对双色拉盖尔高斯激光驱动固体等离子激发同时携带自旋角动量与轨道角动量的高次谐波的物理过程进行了研究,根据高次谐波产生过程中的光子能量与角动量守恒定律对其内在物理机制进行了理论分析,并讨论了对谐波阶次、偏振态(自旋角动量)以及拓扑荷数(轨道角动量)进行调控的方法。研究结果为开发高亮度、超短超快、短波长、自旋与轨道角动量可调控的涡旋光束辐射源提供了理论依据,在光学微操控、超分辨成像、光通信以及离子加速等领域具有较大的实际应用前景。
  • 图  1  双色拉盖尔高斯驱动激光电场强度空间分布图

    Figure  1.  Spatial distribution of electric field intensity of two-color Laguerre-Gaussian driven laser

    图  2  激光驱动场与等离子体作用前后的一维傅里叶频谱图

    Figure  2.  One dimensional Fourier spectrum between the driving light field and the plasma

    图  3  特定阶次谐波波前电场分量沿轴向分布

    Figure  3.  Axial distribution of electric field component of specific order harmonic wave front

    图  4  谐波波前在yz平面的电场分布图

    Figure  4.  Electric field of harmonic wave front in yz plane

    图  5  谐波波前在轴向不同位置处的电场强度yz平面分布图

    Figure  5.  Plane distribution of electric field intensity at different axial positions of the harmonic front

    图  6  高次谐波的频谱分布与第7、9阶谐波的电场强度横截面分布

    Figure  6.  Spectrum distribution of higher harmonics and cross section distribution of electric field intensity of 7th and 9th harmonics

    图  7  高次谐波频谱分布与第3、4阶谐波的电场强度横截面分布

    Figure  7.  Spectral distribution of higher harmonics and cross section distribution of electric field intensity of the third and fourth harmonics

  • [1] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189. doi: 10.1103/PhysRevA.45.8185
    [2] Zhang Xiaomei, Shen Baifei, Shi Yin, et al. Generation of intense high-order vortex harmonics[J]. Physical Review Letters, 2015, 114: 173901. doi: 10.1103/PhysRevLett.114.173901
    [3] Ju Libao, Huang Taiwu, Li Ran, et al. Topological control of laser-driven acceleration structure for producing extremely bright ion beams[J]. Nuclear Fusion, 2021, 61: 066006. doi: 10.1088/1741-4326/abeed6
    [4] Gauthier D, Ribič P R, Adhikary G, et al. Tunable orbital angular momentum in high-harmonic generation[J]. Nature Communications, 2017, 8: 14971. doi: 10.1038/ncomms14971
    [5] Hernández-García C, Picón A, Román J S, et al. Attosecond extreme ultraviolet vortices from high-order harmonic generation[J]. Physical Review Letters, 2013, 111: 083602. doi: 10.1103/PhysRevLett.111.083602
    [6] Allaria E, Diviacco B, Callegari C, et al. Control of the polarization of a vacuum-ultraviolet, high-gain, free-electron laser[J]. Physical Review X, 2014, 4: 041040.
    [7] 龙凤琼, 郑世杰, 李玮, 等. 线偏振相位涡旋光束的像散特性[J]. 强激光与粒子束, 2020, 32:081005 doi: 10.11884/HPLPB202032.200025

    Long Fengqiong, Zheng Shijie, Li Wei, et al. Astigmatic characteristics of linearly polarized phase vortex beam[J]. High Power Laser and Particle Beams, 2020, 32: 081005 doi: 10.11884/HPLPB202032.200025
    [8] 黄石明, 聂建业, 张蓉竹. 偏振方向对涡旋光束产生的影响[J]. 强激光与粒子束, 2018, 30:071002 doi: 10.11884/HPLPB201830.170404

    Huang Shiming, Nie Jianye, Zhang Rongzhu. Influence of polarization direction on vortex beam[J]. High Power Laser and Particle Beams, 2018, 30: 071002 doi: 10.11884/HPLPB201830.170404
    [9] Zhou Xibin, Lock R, Wagner N, et al. Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields[J]. Physical Review Letters, 2009, 102: 073902. doi: 10.1103/PhysRevLett.102.073902
    [10] 郑颖辉, 熊辉, 彭滟, 等. 7 fs超快强激光驱动Ar原子产生支持单个阿秒脉冲的高次谐波连续谱[J]. 光学学报, 2006, 26(9): 1439-1440

    Zheng Yinghui, Xiong Hui, Peng Yan, Generation of high-order harmonic continuum supporting single Attosecond pulse in argon driven by intense 7 fs laser pulse[J]. Acta Optica Sinica, 2006, 26(9): 1439-1440
    [11] Quéré F, Thaury C, Monot P, et al. Coherent wake emission of high-order harmonics from Overdense plasmas[J]. Physical Review Letters, 2006, 96: 125004. doi: 10.1103/PhysRevLett.96.125004
    [12] Bulanov S V, Naumova N M, Pegoraro F. Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma[J]. Physics of Plasmas, 1994, 1(3): 745-757. doi: 10.1063/1.870766
    [13] Lichters R, Meyer-ter-Vehn J, Pukhov A. Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity[J]. Physics of Plasmas, 1996, 3(9): 3425-3437. doi: 10.1063/1.871619
    [14] Baeva T, Gordienko S, Pukhov A. Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma[J]. Physical Review E, 2006, 74: 046404. doi: 10.1103/PhysRevE.74.046404
    [15] Dromey B, Kar S, Bellei C, et al. Bright multi-kev harmonic generation from relativistically oscillating plasma surfaces[J]. Physical Review Letters, 2007, 99: 085001. doi: 10.1103/PhysRevLett.99.085001
    [16] Zepf M, Dromey B, Kar S, et al. High harmonics from relativistically oscillating plasma surfaces-a high brightness attosecond source at keV photon energies[J]. Plasma Physics and Controlled Fusion, 2007, 49(12B): B149-B162. doi: 10.1088/0741-3335/49/12B/S14
    [17] Heissler P, Hörlein R, Mikhailova J M, et al. Few-cycle driven relativistically oscillating plasma mirrors: a source of intense isolated attosecond pulses[J]. Physical Review Letters, 2012, 108: 235003. doi: 10.1103/PhysRevLett.108.235003
    [18] Chen Ziyu, Pukhov A. Bright high-order harmonic generation with controllable polarization from a relativistic plasma mirror[J]. Nature Communications, 2016, 7: 12515. doi: 10.1038/ncomms12515
    [19] Chen Ziyu. Spectral control of high harmonics from relativistic plasmas using Bicircular fields[J]. Physical Review E, 2018, 97: 043202. doi: 10.1103/PhysRevE.97.043202
    [20] Chen Ziyu, Li Xiaoya, Li Boyuan, et al. Isolated elliptically polarized attosecond soft X-ray with high-brilliance using polarization gating of harmonics from relativistic plasmas at oblique incidence[J]. Optics Express, 2018, 26(4): 4572-4580. doi: 10.1364/OE.26.004572
    [21] Der Brügge D A, Pukhov A. Enhanced relativistic harmonics by electron nanobunching[J]. Physics of Plasmas, 2010, 17: 033110. doi: 10.1063/1.3353050
    [22] Dromey B, Rykovanov S, Yeung M, et al. Coherent synchrotron emission from electron nanobunches formed in relativistic laser-plasma interactions[J]. Nature Physics, 2012, 8(11): 804-808. doi: 10.1038/nphys2439
    [23] Arber T D, Bennett K, Brady C S, et al. Contemporary particle-in-cell approach to laser-plasma modelling[J]. Plasma Physics and Controlled Fusion, 2015, 57: 113001. doi: 10.1088/0741-3335/57/11/113001
  • 加载中
图(7)
计量
  • 文章访问数:  526
  • HTML全文浏览量:  231
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-21
  • 修回日期:  2023-01-19
  • 录用日期:  2023-01-19
  • 网络出版日期:  2023-02-07
  • 刊出日期:  2023-04-07

目录

    /

    返回文章
    返回