留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽带高抑制性能电磁脉冲防护电路设计与实验

张景淇 秦风 高原 钟受洪 王震

张景淇, 秦风, 高原, 等. 宽带高抑制性能电磁脉冲防护电路设计与实验[J]. 强激光与粒子束, 2023, 35: 023004. doi: 10.11884/HPLPB202335.220257
引用本文: 张景淇, 秦风, 高原, 等. 宽带高抑制性能电磁脉冲防护电路设计与实验[J]. 强激光与粒子束, 2023, 35: 023004. doi: 10.11884/HPLPB202335.220257
Zhang Jingqi, Qin Feng, Gao Yuan, et al. Design and experiment of wideband electromagnetic pulse protection circuit with effective suppression capability[J]. High Power Laser and Particle Beams, 2023, 35: 023004. doi: 10.11884/HPLPB202335.220257
Citation: Zhang Jingqi, Qin Feng, Gao Yuan, et al. Design and experiment of wideband electromagnetic pulse protection circuit with effective suppression capability[J]. High Power Laser and Particle Beams, 2023, 35: 023004. doi: 10.11884/HPLPB202335.220257

宽带高抑制性能电磁脉冲防护电路设计与实验

doi: 10.11884/HPLPB202335.220257
基金项目: 中国工程物理研究院复杂电磁环境科学与技术重点实验室基金项目
详细信息
    作者简介:

    张景淇,zhangjingqi_gscaep@163.com

    通讯作者:

    秦 风,fq_soul2000@163.com

    高 原,18142550916@163.com

  • 中图分类号: TM937

Design and experiment of wideband electromagnetic pulse protection circuit with effective suppression capability

  • 摘要: 强电磁脉冲易通过天线、孔缝、线缆等多种耦合途径进入电子系统内部,造成敏感电子设备出现短暂故障或永久损毁。安装电磁脉冲防护电路可有效提高电子设备抗强电磁脉冲能力。基于LC选频网络和瞬态电压抑制(TVS)二极管,设计了一种宽带高抑制性能电磁脉冲防护电路,防护电路工作带宽超过2 GHz、插入损耗低于0.6 dB。系统性研究了防护电路对频谱分布在工作带宽内多种电磁脉冲(方波脉冲、宽带高功率微波、窄带高功率微波)的防护能力。结果表明:防护电路对不同类型电磁脉冲电压抑制比大于40 dB、耐受功率超过387 kW、而响应时间仅0.7 ns。该防护电路具有工作频带宽、电磁抑制性能好、响应速度快、耐受功率高等特点,对电子信息系统电磁防护加固具有重要意义。
  • 图  1  LC选频网络原理图

    Figure  1.  Schematic illustration of LC frequency selective network

    图  2  TVS二极管在小信号作用下的等效电路

    Figure  2.  Equivalent circuit of TVS diode under excitation of small signal

    图  3  在Advanced Design System中建立的防护电路仿真模型

    Figure  3.  Simulation module of protection circuit in Advanced Design System

    图  4  装配完成的防护电路模块

    Figure  4.  The fabricated protection circuit module

    图  5  仿真与实测得到的S21参数和VSWR

    Figure  5.  Simulated and measured S21 parameter and VSWR

    图  6  防护性能测试系统原理图

    Figure  6.  Schematic illustrating the measurement system for protection performance test

    图  7  三种不同电磁脉冲的归一化时域波形与频谱分布

    Figure  7.  Normalized transient waveform and frequency spectrum of three different types of electromagnetic pulses

    图  8  防护性能评估参数示意图

    Figure  8.  Schematic illustrating the evaluation parameters of protection performance

    图  9  在三种电磁脉冲激励下测试得到的入射与残余信号波形

    Figure  9.  Measured incident and residual signal waveforms under excitation of 3 types of electromagnetic pulses

    表  1  TVS二极管等效电路参数

    Table  1.   Equivalent circuit parameters of TVS diode

    modelCj/pFRj/kΩRsLp/nHCp/pF
    PESD5V0U1BBYL2.91861.80.12
    PESD2V0Y1BSFYL0.71541.40.08
    下载: 导出CSV

    表  2  防护电路对不同类型电磁脉冲的抑制能力及注入脉冲峰值功率

    Table  2.   Voltage suppression ratio of protection circuit towards different electromagnetic pulses and the peak power of incident pulses

    waveformR/dBincident peak power/kW
    square-wave pulse45.4387.2
    WB-HPM42.7115.2
    NB-HPM40.145.0
    下载: 导出CSV
  • [1] 秦风, 蔡金良, 曹学军, 等. 车辆强电磁脉冲环境适应性研究[J]. 强激光与粒子束, 2019, 31:103203 doi: 10.11884/HPLPB201931.190233

    Qin Feng, Cai Jinliang, Cao Xuejun, et al. Investigation on the adaptability of vehicle in high-intensity electromagnetic pulse environment[J]. High Power Laser and Particle Beams, 2019, 31: 103203 doi: 10.11884/HPLPB201931.190233
    [2] 秦风, 高原, 马弘舸. 高置信度强电磁脉冲环境测试技术研究进展与展望[J]. 强激光与粒子束, 2021, 33:123001 doi: 10.11884/HPLPB202133.210482

    Qin Feng, Gao Yuan, Ma Hongge. Progress and prospect of high-confidence measurement technology for high-intensity electromagnetic pulse[J]. High Power Laser and Particle Beams, 2021, 33: 123001 doi: 10.11884/HPLPB202133.210482
    [3] 刘培国, 刘晨曦, 谭剑锋, 等. 强电磁防护技术研究进展[J]. 中国舰船研究, 2015, 10(2):2-6 doi: 10.3969/j.issn.1673-3185.2015.02.002

    Liu Peiguo, Liu Chenxi, Tan Jianfeng, et al. Analysis of the research development on HPM/EMP protection[J]. Chinese Journal of Ship Research, 2015, 10(2): 2-6 doi: 10.3969/j.issn.1673-3185.2015.02.002
    [4] 谭志良, 李亚南, 宋培姣. 射频前端强电磁脉冲防护研究进展[J]. 北京理工大学学报, 2020, 40(3):231-242 doi: 10.15918/j.tbit1001-0645.2018.332

    Tan Zhiliang, Li Yanan, Song Peijiao. Relevant research on electromagnetic pulse protection of RF front-end[J]. Transactions of Beijing Institute of Technology, 2020, 40(3): 231-242 doi: 10.15918/j.tbit1001-0645.2018.332
    [5] 黄丹. 基于PIN二极管的X波段大功率限幅器设计[D]. 成都: 电子科技大学, 2018

    Huang Dan. Design of a X-band microwave limiter based on PIN diode[D]. Chengdu: University of Electronic Science and Technology of China, 2018
    [6] 毕景康. 强电磁脉冲组合防护模块设计与研究[D]. 西安: 西安电子科技大学, 2020

    Bi Jingkang. Design and research of combined protection module of strong electromagnetic pulse[D]. Xi’an: Xidian University, 2020
    [7] 杜传报, 毛从光, 崔志同, 等. 无线通信系统电磁脉冲传导防护组件设计与有效性试验验证[J]. 强激光与粒子束, 2021, 33:093005 doi: 10.11884/HPLPB202133.210155

    Du Chuanbao, Mao Congguang, Cui Zhitong, et al. Design and validation test of high-altitude electromagnetic pulse conductive protector module for wireless communication system[J]. High Power Laser and Particle Beams, 2021, 33: 093005 doi: 10.11884/HPLPB202133.210155
    [8] Younis M T, Nasser N Y. Overvoltage transient protection network design[J]. Engineering and Technology Journal, 2009, 27(15): 2711-2718.
    [9] Kim K N, Lee S H, Kim J T. Implementation of dedicated power line filter for HEMP protection[J]. The Journal of the Institute of Internet, Broadcasting and Communication, 2016, 16(4): 47-52. doi: 10.7236/JIIBC.2016.16.4.47
    [10] 张俊, 姜彦南, 张耀辉, 等. 纳秒脉冲下典型钳压型浪涌防护元件的响应特性[J]. 强激光与粒子束, 2016, 28:125003 doi: 10.11884/HPLPB201628.160167

    Zhang Jun, Jiang Yannan, Zhang Yaohui, et al. Nanosecond pulse response of typical voltage-clamping surge protective devices[J]. High Power Laser and Particle Beams, 2016, 28: 125003 doi: 10.11884/HPLPB201628.160167
    [11] 张小威. 不同快脉冲下脉冲防护器件响应特性与防护技术研究[D]. 西安: 西安电子科技大学, 2019: 20-47

    Zhang Xiaowei. Research on response characteristics and protection technology of EMP protection devices under different fast pulses[D]. Xi’an: Xidian University, 2019: 20-47
    [12] 邓世雄, 高长征, 陈书宾, 等. 小型化高功率微波限幅器研究[J]. 微波学报, 2020, 36(5):70-73 doi: 10.14183/j.cnki.1005-6122.202005014

    Deng Shixiong, Gao Changzheng, Chen Shubin, et al. Research on miniaturized high power microwave limiter[J]. Journal of Microwaves, 2020, 36(5): 70-73 doi: 10.14183/j.cnki.1005-6122.202005014
    [13] 李亚南, 谭志良. 基于PIN二极管的快上升沿电磁脉冲防护模块设计与研究[J]. 兵工学报, 2018, 39(10):2066-2072 doi: 10.3969/j.issn.1000-1093.2018.10.021

    Li Yanan, Tan Zhiliang. Design and research of the fast rise time electromagnetic pulse protection module based on PIN diode[J]. Acta Armamentarii, 2018, 39(10): 2066-2072 doi: 10.3969/j.issn.1000-1093.2018.10.021
    [14] Yang Lin, Yang Lin’an, Rong Taotao, et al. Codesign of Ka-band integrated GaAs PIN diodes limiter and low noise amplifier[J]. IEEE Access, 2019, 7: 88275-88281. doi: 10.1109/ACCESS.2019.2923210
    [15] Yang S S, Kim T Y, Kong D K, et al. A novel analysis of a Ku-band planar p-i-n diode limiter[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(6): 1447-1460. doi: 10.1109/TMTT.2009.2019993
    [16] 艾竞. 小型化X波段平衡式限幅器设计[D]. 成都: 电子科技大学, 2013

    Ai Jing. Design of a X-band miniaturized balanced microwave limiter[D]. Chengdu: University of Electronic Science and Technology of China, 2013
    [17] 王冬冬, 邓峰, 郑生全, 等. PIN二极管限幅器的电磁脉冲损伤特性试验[J]. 中国舰船研究, 2015, 10(2):65-69 doi: 10.3969/j.issn.1673-3185.2015.02.012

    Wang Dongdong, Deng Feng, Zheng Shengquan, et al. Experimental investigation on the EMP damage characteristics of PIN diode limiters[J]. Chinese Journal of Ship Research, 2015, 10(2): 65-69 doi: 10.3969/j.issn.1673-3185.2015.02.012
    [18] 牛萍, 王培, 赵佳欢, 等. 基于组合型电涌保护器能量配合的实验研究[J]. 南京信息工程大学学报:自然科学版, 2015, 7(5):463-468

    Niu Ping, Wang Pei, Zhao Jiahuan, et al. Energy coordination of combined surge protective device[J]. Journal of Nanjing University of Information Science and Technology: Natural Science Edition, 2015, 7(5): 463-468
    [19] 孟兆祥, 毕军建, 王玉明, 等. 基于组合匹配的低残压宽带雷电防护方法研究[J]. 电波科学学报, 2021, 36(4):547-552

    Meng Zhaoxiang, Bi Junjian, Wang Yuming, et al. Research on the lightning protection method for the low residual voltage and broadband based on the combined matching[J]. Chinese Journal of Radio Science, 2021, 36(4): 547-552
    [20] Lepkowski J, Wolfe B, Lepkowski W. EMI/ESD solutions for the CAN network[C]//Proceedings. 2005 IEEE Networking, Sensing and Control, 2005. 2005: 413-418.
    [21] 陈子鹏, 戴亚文, 李鹏, 等. 无线传感器电磁脉冲效应实验及防护电路设计[J]. 武汉理工大学学报, 2013, 35(5):146-151 doi: 10.3963/j.issn.1671-4431.2013.05.028

    Chen Zipeng, Dai Yawen, Li Peng, et al. Effect of ESD EMP test on wireless sensor and protection network design[J]. Journal of Wuhan University of Technology, 2013, 35(5): 146-151 doi: 10.3963/j.issn.1671-4431.2013.05.028
    [22] Meiguni J S, Zhou Jianchi, Maghlakelidze G, et al. Transient analysis of ESD protection circuits for high-speed ICs[J]. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(5): 1312-1321. doi: 10.1109/TEMC.2021.3071644
    [23] Zhang Chengrui, Zeng Xun, Zhou Liang, et al. Protection effects using transient voltage suppressor diodes based circuits under high-power microwave pulses[J]. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(6): 2058-2064. doi: 10.1109/TEMC.2021.3095483
    [24] Pozar D M. Microwave engineering[M]. 4th ed. New York: John Wiley & Sons, 2011: 174-191.
    [25] 郝凤柱. 某机载天线系统的电磁脉冲防护研究[D]. 合肥: 合肥工业大学, 2017: 28-39

    Hao Fengzhu. Study of protection against electromagnetic pulse for airborne antenna[D]. Hefei: Hefei University of Technology, 2017: 28-39
    [26] Shurenkov V V, Pershenkov V S. Electromagnetic pulse effects and damage mechanism on the semiconductor electronics[J]. Facta Universitatis-Series: Electronics and Energetics, 2016, 29(4): 621-629. doi: 10.2298/FUEE1604621S
    [27] Cheng Yonghong, Ding Man, Wu Kai, et al. Damage effect of typical electronic device under EMP[C]//Proceedings of 2011 International Symposium on Electrical Insulating Materials. 2011: 491-494.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  704
  • HTML全文浏览量:  258
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-22
  • 修回日期:  2022-10-17
  • 网络出版日期:  2022-10-20
  • 刊出日期:  2023-01-14

目录

    /

    返回文章
    返回