留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空间结构内部锁相的光纤激光相干合成技术

龙金虎 粟荣涛 常洪祥 侯天悦 常琦 蒋敏 张嘉怡 马阎星 马鹏飞 周朴

龙金虎, 粟荣涛, 常洪祥, 等. 基于空间结构内部锁相的光纤激光相干合成技术[J]. 强激光与粒子束, 2023, 35: 041008. doi: 10.11884/HPLPB202335.220258
引用本文: 龙金虎, 粟荣涛, 常洪祥, 等. 基于空间结构内部锁相的光纤激光相干合成技术[J]. 强激光与粒子束, 2023, 35: 041008. doi: 10.11884/HPLPB202335.220258
Long Jinhu, Su Rongtao, Chang Hongxiang, et al. Coherent combining of fiber laser based on internal phase locking in spatial structure[J]. High Power Laser and Particle Beams, 2023, 35: 041008. doi: 10.11884/HPLPB202335.220258
Citation: Long Jinhu, Su Rongtao, Chang Hongxiang, et al. Coherent combining of fiber laser based on internal phase locking in spatial structure[J]. High Power Laser and Particle Beams, 2023, 35: 041008. doi: 10.11884/HPLPB202335.220258

基于空间结构内部锁相的光纤激光相干合成技术

doi: 10.11884/HPLPB202335.220258
基金项目: 国家自然科学基金项目(62275272, 62075242); 湖南省自然科学基金创新研究群体项目(2019JJ10005); 长沙市优秀青年创新人才培养计划项目(kq2206003); 湖南省研究生科研创新项目(QL20220013)
详细信息
    作者简介:

    龙金虎,ljh65923@163.com

    通讯作者:

    粟荣涛,surongtao@126.com

    周 朴,zhoupu203@163.com

  • 中图分类号: TN248.1

Coherent combining of fiber laser based on internal phase locking in spatial structure

  • 摘要: 介绍了本课题组近年来在基于空间结构内部锁相的光纤激光相干合成方面的研究工作,给出了空间结构内部锁相相干合成的基本原理,搭建了七路低功率光纤激光阵列实验系统,结果表明在内部相位噪声校正基础之上,可以稳定补偿外部相位差进而实现激光阵列同相位输出,验证了内部锁相方法的可行性。进一步介绍了空间结构内部锁相技术在目标在回路相干合成、阵列光束光场调控等方面的拓展应用,通过实验论证了空间结构内部锁相技术能够有效提升目标在回路相干合成系统的相位控制带宽,并在远场有效生成轨道角动量光束阵列,其拓扑荷数可从−1到+1切换。
  • 图  1  光纤激光相干合成系统示意图[52]

    Figure  1.  System configuration of fiber laser coherent combining based on internal phase locking[52]

    图  2  光纤激光内部锁相相干合成实验系统[52]

    Figure  2.  Experimental setup of coherent fiber laser array based on internal phase control[52]

    图  3  CCD1采集到的采样阵列的强度分布当相位控制器1[52]

    Figure  3.  Irradiance distribution of the sampled array detected by CCD1 before and after turning on Controller 1[52]

    图  4  实验系统及开环实验结果和闭环实验结果[52]

    Figure  4.  Experimental system, result of open-loop and result of closed-loop[52]

    图  5  发射阵列的强度分布

    Figure  5.  Irradiance distribution of the emitted array

    图  6  基于空间结构内部锁相的目标在回路相干合成示意图

    Figure  6.  Schematic drawing of TIL-CBC based on internal phase control

    图  7  近场相干合成的实验结果[61]

    Figure  7.  Experimental results of coherent beam combining (CBC) in the near field[61]

    图  8  目标处合成光束的强度分布[61]

    Figure  8.  Intensity distributions of combined beams on the target[61]

    图  9  取样阵列实验结果[85]

    Figure  9.  Experimental results of sampled laser array[85]

    图  10  合成OAM光束的理论和实验结果[85]

    Figure  10.  Theoretical and experimental results of the combined OAM beams[85]

    图  11  干涉实验系统及结果[84]

    Figure  11.  Results of interferometric experiment[84]

  • [1] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867. doi: 10.1038/nphoton.2013.273
    [2] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241. doi: 10.1109/JSTQE.2014.2321279
    [3] 来文昌, 马鹏飞, 肖虎, 等. 高功率窄线宽光纤激光技术[J]. 强激光与粒子束, 2020, 32:121001 doi: 10.11884/HPLPB202032.200186

    Lai Wenchang, Ma Pengfei, Xiao Hu, et al. High-power narrow-linewidth fiber laser technology[J]. High Power Laser and Particle Beams, 2020, 32: 121001 doi: 10.11884/HPLPB202032.200186
    [4] Danson C N, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7: e54. doi: 10.1017/hpl.2019.36
    [5] Robin C, Dajani I, Pulford B. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811W output power[J]. Optics Letters, 2014, 39(3): 666-669. doi: 10.1364/OL.39.000666
    [6] O'Connor M, Gapontsev V, Fomin V, et al. Power scaling of SM fiber lasers toward 10kW[C]//Conference on Lasers and Electro-Optics/International Quantum Electronics Conference. 2009.
    [7] Fang Qiang, Li Jinhui, Shi Wei, et al. 5 kW near-diffraction-limited and 8 kW high-brightness monolithic continuous wave fiber lasers directly pumped by laser diodes[J]. IEEE Photonics Journal, 2017, 9: 1506107.
    [8] Lin Honghuan, Xu Lixin, Li Chengyu, et al. 10.6 kW high-brightness cascade-end-pumped monolithic fiber lasers directly pumped by laser diodes in step-index large mode area double cladding fiber[J]. Results in Physics, 2019, 14: 102479. doi: 10.1016/j.rinp.2019.102479
    [9] Wang Y, Kitahara R, Kiyoyama W, et al. 8-kW single-stage all-fiber Yb-doped fiber laser with a BPP of 0.50 mm-mrad[C]//Proceedings of SPIE 11260, Fiber Lasers XVII: Technology and Systems. 2020: 1126022.
    [10] Du Shanshan, Qi Tiancheng, Li Dan, et al. 10 kW fiber amplifier seeded by random fiber laser with suppression of spectral broadening and SRS[J]. IEEE Photonics Technology Letters, 2022, 34(14): 721-724. doi: 10.1109/LPT.2022.3183025
    [11] Wu Hanshuo, Li Ruixian, Xiao Hu, et al. First demonstration of a bidirectional tandem-pumped high-brightness 8 kW level confined-doped fiber amplifier[J]. Journal of Lightwave Technology, 2022, 40(16): 5673-5681. doi: 10.1109/JLT.2022.3183381
    [12] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266. doi: 10.1364/OE.16.013240
    [13] Liu Wei, Ma Pengfei, Lv Haibin, et al. General analysis of SRS-limited high-power fiber lasers and design strategy[J]. Optics Express, 2016, 24(23): 26715-26721. doi: 10.1364/OE.24.026715
    [14] Stihler C, Jauregui C, Kholaif S E, et al. Intensity noise as a driver for transverse mode instability in fiber amplifiers[J]. PhotoniX, 2020, 1(1): 8. doi: 10.1186/s43074-020-00008-8
    [15] Huang Zhimeng, Shu Qiang, Tao Rumao, et al. >5kW record high power narrow linewidth laser from traditional step-index monolithic fiber amplifier[J]. IEEE Photonics Technology Letters, 2021, 33(21): 1181-1184. doi: 10.1109/LPT.2021.3112270
    [16] Ren Shuai, Lai Wenchang, Wang Guangjian, et al. Experimental study on the impact of signal bandwidth on the transverse mode instability threshold of fiber amplifiers[J]. Optics Express, 2022, 30(5): 7845-7853. doi: 10.1364/OE.454189
    [17] Fan T Y. Laser beam combining for high-power, high-radiance sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 567-577. doi: 10.1109/JSTQE.2005.850241
    [18] Xue Yuhao, He Bin, Zhou Jun, et al. High power passive phase locking of four Yb-doped fiber amplifiers by an all-optical feedback loop[J]. Chinese Physics Letters, 2011, 28: 054212. doi: 10.1088/0256-307X/28/5/054212
    [19] Brignon A. Coherent laser beam combining[M]. Weinheim: Wiley-VCH, 2013.
    [20] 周军, 何兵, 薛宇豪, 等. 高功率光纤激光阵列被动相干组束技术研究[J]. 光学学报, 2011, 31:0900129 doi: 10.3788/AOS201131.0900129

    Zhou Jun, He Bing, Xue Yuhao, et al. Study on passive coherent beam combination technology of high power fiber laser arrays[J]. Acta Optica Sinica, 2011, 31: 0900129 doi: 10.3788/AOS201131.0900129
    [21] Liu Zejin, Jin Xiaoxi, Su Rongtao, et al. Development status of high power fiber lasers and their coherent beam combination[J]. SCIENCE CHINA Information Sciences, 2019, 62: 41301. doi: 10.1007/s11432-018-9742-0
    [22] Niu Xiaxia, Liu Meizhong, Zhang Haibo, et al. Coherent beam combining of a nine-fiber laser array using an all-optical ring cavity feedback loop based on diffractive optical element[J]. Optical Engineering, 2020, 59: 116108.
    [23] 周朴, 粟荣涛, 马阎星, 等. 激光相干合成的研究进展: 2011-2020[J]. 中国激光, 2021, 48:0401003 doi: 10.3788/CJL202148.0401003

    Zhou Pu, Su Rongtao, Ma Yanxing, et al. Review of coherent laser beam combining research progress in the past decade[J]. Chinese Journal of Lasers, 2021, 48: 0401003 doi: 10.3788/CJL202148.0401003
    [24] Bourderionnet J, Bellanger C, Primot J, et al. Collective coherent phase combining of 64 fibers[J]. Optics Express, 2011, 19(18): 17053-17058. doi: 10.1364/OE.19.017053
    [25] 粟荣涛, 周朴, 王小林, 等. 32路光纤激光相干阵列的相位锁定[J]. 强激光与粒子束, 2014, 26:110101 doi: 10.11884/HPLPB201426.110101

    Su Rongtao, Zhou Pu, Wang Xiaolin, et al. Phase locking of a coherent array of 32 fiber lasers[J]. High Power Laser and Particle Beams, 2014, 26: 110101 doi: 10.11884/HPLPB201426.110101
    [26] Ahn H K, Kong H J. Cascaded multi-dithering theory for coherent beam combining of multiplexed beam elements[J]. Optics Express, 2015, 23(9): 12407-12413. doi: 10.1364/OE.23.012407
    [27] Huang Zhimeng, Tang Xuan, Luo Yongquan, et al. Active phase locking of thirty fiber channels using multilevel phase dithering method[J]. Review of Scientific Instruments, 2016, 87: 033109. doi: 10.1063/1.4943666
    [28] Kabeya D, Kermène V, Fabert M, et al. Efficient phase-locking of 37 fiber amplifiers by phase-intensity mapping in an optimization loop[J]. Optics Express, 2017, 25(12): 13816-13821. doi: 10.1364/OE.25.013816
    [29] Chang Hongxiang, Xi Jiachao, Su Rongtao, et al. Efficient phase-locking of 60 fiber lasers by stochastic parallel gradient descent algorithm[J]. Chinese Optics Letters, 2020, 18: 101403. doi: 10.3788/COL202018.101403
    [30] Fsaifes I, Daniault L, Bellanger S, et al. Coherent beam combining of 61 femtosecond fiber amplifiers[J]. Optics Express, 2020, 28(14): 20152-20161. doi: 10.1364/OE.394031
    [31] Chang Hongxiang, Chang Qi, Xi Jiachao, et al. First experimental demonstration of coherent beam combining of more than 100 beams[J]. Photonics Research, 2020, 8(12): 1943-1948. doi: 10.1364/PRJ.409788
    [32] Shpakovych M, Maulion G, Kermene V, et al. Experimental phase control of a 100 laser beam array with quasi-reinforcement learning of a neural network in an error reduction loop[J]. Optics Express, 2021, 29(8): 12307-12318. doi: 10.1364/OE.419232
    [33] 常琦, 侯天悦, 邓宇, 等. 基于二维光场计算的400束规模激光相干合成[J]. 红外与激光工程, 2022, 51:20220276 doi: 10.3788/IRLA20220276

    Chang Qi, Hou Tianyue, Deng Yu, et al. Coherent combined of 400 scale lasers based on two-dimensional light field calculation[J]. Infrared and Laser Engineering, 2022, 51: 20220276 doi: 10.3788/IRLA20220276
    [34] Ma Yanxing, Wang Xiaolin, Leng Jingyong, et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique[J]. Optics Letters, 2011, 36(6): 951-953. doi: 10.1364/OL.36.000951
    [35] Flores A, Shay T M, Lu C A, et al. Coherent beam combining of fiber amplifiers in a kW regime[C]//CLEO: 2011—Laser Applications to Photonic Applications. 2011.
    [36] Yu C X, Augst S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 2011, 36(14): 2686-2688. doi: 10.1364/OL.36.002686
    [37] McNaught S J, Thielen P A, Adams L N, et al. Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20: 0901008.
    [38] Flores A, Dajani I, Holten R H, et al. Multi-kilowatt diffractive coherent combining of pseudorandom-modulated fiber amplifiers[J]. Optical Engineering, 2016, 55: 096101. doi: 10.1117/1.OE.55.9.096101
    [39] 刘泽金, 周朴, 马鹏飞, 等. 4路高功率窄线宽、线偏振光纤放大器相干偏振合成实现5kW级高亮度激光输出[J]. 中国激光, 2017, 44:0415004 doi: 10.3788/CJL201744.0415004

    Liu Zejin, Zhou Pu, Ma Pengfei, et al. 4 channels of high-power narrow linewidth linear polarization fiber amplifiers coherent polarization combining to achieve 5kW high-brightness laser output[J]. Chinese Journal of Lasers, 2017, 44: 0415004 doi: 10.3788/CJL201744.0415004
    [40] Ma Pengfei, Chang Hongaxing, Ma Yanxing, et al. 7.1 kW coherent beam combining system based on a seven-channel fiber amplifier array[J]. Optics & Laser Technology, 2021, 140: 107016.
    [41] Shekel E, Vidne Y, Urbach B. 16kW single mode CW laser with dynamic beam for material processing[C]//Proceedings of SPIE 11260, Fiber Lasers XVII: Technology and Systems. 2020: 1126021.
    [42] Müller M, Aleshire C, Klenke A, et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2020, 45(11): 3083-3086. doi: 10.1364/OL.392843
    [43] 吴坚, 马阎星, 马鹏飞, 等. 光纤激光相干合成20 kW级高功率输出[J]. 红外与激光工程, 2021, 50:20210621 doi: 10.3788/IRLA20210621

    Wu Jian, Ma Yanxing, Ma Pengfei, et al. Coherently combined fiber laser with 20 kW high power output[J]. Infrared and Laser Engineering, 2021, 50: 20210621 doi: 10.3788/IRLA20210621
    [44] Goodno G D, Asman C P, Anderegg J, et al. Brightness-scaling potential of actively phase-locked solid-state laser arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 460-472. doi: 10.1109/JSTQE.2007.896618
    [45] Seise E, Klenke A, Limpert J, et al. Coherent addition of fiber-amplified ultrashort laser pulses[J]. Optics Express, 2010, 18(26): 27827-27835. doi: 10.1364/OE.18.027827
    [46] Antier M, Bourderionnet J, Larat C, et al. kHz closed loop interferometric technique for coherent fiber beam combining[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20: 090150.
    [47] Weyrauch T, Vorontsov M, Mangano J, et al. Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7  km[J]. Optics Letters, 2016, 41(4): 840-843. doi: 10.1364/OL.41.000840
    [48] Geng Chao, Luo Wen, Tan Yi, et al. Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control[J]. Optics Express, 2013, 21(21): 25045-25055. doi: 10.1364/OE.21.025045
    [49] Flores A, Ehrehreich T, Holten R, et al. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light[C]//Proceedings of SPIE 9728, Fiber Lasers XIII: Technology, Systems, and Applications. 2016: 97281Y.
    [50] Beresnev L A, Motes R A, Townes K J, et al. Design of a noncooled fiber collimator for compact, high-efficiency fiber laser arrays[J]. Applied Optics, 2017, 56(3): B169-B178. doi: 10.1364/AO.56.00B169
    [51] Boju A, Maulion G, Saucourt J, et al. Small footprint phase locking system for a large tiled aperture laser array[J]. Optics Express, 2021, 29(8): 11445-11452. doi: 10.1364/OE.420251
    [52] Long Jinhu, Chang Hongxiang, Zhang Yuqiu, et al. Compact internal sensing phase locking system for coherent combining of fiber laser array[J]. Optics & Laser Technology, 2022, 148: 107775.
    [53] 周朴. 光纤激光相干合成技术研究[D]. 长沙: 国防科学技术大学, 2010

    Zhou Pu. Study on the coherent beam combining of fiber laser[D]. Changsha: National University of Defense Technology, 2010
    [54] Su Rongtao, Zhang Zhixing, Zhou Pu, et al. Coherent beam combining of a fiber lasers array based on cascaded phase control[J]. IEEE Photonics Technology Letters, 2016, 28(22): 2585-2588. doi: 10.1109/LPT.2016.2605765
    [55] 粟荣涛, 龙金虎, 马阎星, 等. 激光相干阵列和控制方法: 202110650427.6[P]. 2021-06-10

    Su Rongtao, Long Jinhu, Ma Yanxing, et al. The coherently beams laser array and its control method: 202110650427.6[P]. 2021-06-10
    [56] Bowman D J, King M J, Sutton A J, et al. Internally sensed optical phased array[J]. Optics Letters, 2013, 38(7): 1137-1139. doi: 10.1364/OL.38.001137
    [57] Roberts L E, Ward R L, Sutton A J, et al. Coherent beam combining using a 2D internally sensed optical phased array[J]. Applied Optics, 2014, 53(22): 4881-4885. doi: 10.1364/AO.53.004881
    [58] Roberts L E, Ward R L, Smith C, et al. Coherent beam combining using an internally sensed optical phased array of frequency-offset phase locked lasers[J]. Photonics, 2020, 7: 118. doi: 10.3390/photonics7040118
    [59] Yang Yan, Geng Chao, Li Feng, et al. Multi-aperture all-fiber active coherent beam combining for free-space optical communication receivers[J]. Optics Express, 2017, 25(22): 27519-27532. doi: 10.1364/OE.25.027519
    [60] 李枫, 耿超, 李新阳, 等. 基于光纤耦合器的全光纤链路锁相控制[J]. 光电工程, 2017, 44(6):602-609

    Li Feng, Geng Chao, Li Xinyang, et al. Phase-locking control in all fiber link based on fiber coupler[J]. Opto-Electronic Engineering, 2017, 44(6): 602-609
    [61] Long Jinhu, Jin Kaikai, Hou Tianyue, et al. Wavefront aberration mitigation with adaptive distributed aperture fiber array lasers[C]//Proceedings of SPIE 11890, Advanced Lasers, High-Power Lasers, and Applications XII. 2021: 1189008.
    [62] 粟荣涛, 龙金虎, 马阎星, 等. 一种活塞相位控制系统及方法: 110729628B[P]. 2021-05-25.

    Su Rongtao, Long Jinhu, Ma Yanxing, et al. The system and method of piston phase control: 110729628B[P]. 2021-05-25.
    [63] Primmerman C A, Price T R, Humphreys R A, et al. Atmospheric-compensation experiments in strong-scintillation conditions[J]. Applied Optics, 1995, 34(12): 2081-2088. doi: 10.1364/AO.34.002081
    [64] Lukin V P. Limitations of adaptive control efficiency due to singular points in the wavefront of a laser beam[J]. Applied Optics, 2012, 51(10): C176-C183. doi: 10.1364/AO.51.00C176
    [65] 耿超, 李新阳, 张小军, 等. 基于目标在回路的三路光纤传输激光相干合成实验[J]. 物理学报, Acta Physica Sinica, 2012, 61:034204 doi: 10.7498/aps.61.034204

    Geng Chao, Li Xinyang, Zhang Xiaojun, et al. Experimental investigation on coherent beam combination of a three-element fiber array based on target-in-the-loop technique[J]. Acta Physica Sinica, 2012, 61: 034204 doi: 10.7498/aps.61.034204
    [66] Weyrauch T, Vorontsov M A, Carhart G W, et al. Experimental demonstration of coherent beam combining over a 7 km propagation path[J]. Optics Letters, 2011, 36(22): 4455-4457. doi: 10.1364/OL.36.004455
    [67] Geng Chao, Li Feng, Zuo Jing, et al. Fiber laser transceiving and wavefront aberration mitigation with adaptive distributed aperture array for free-space optical communications[J]. Optics Letters, 2020, 45(7): 1906-1909. doi: 10.1364/OL.383093
    [68] Vorontsov M A, Weyrauch T. Laser beam engineering and atmospheric turbulence effects mitigation with coherent fiber array systems[C]//Propagation Through and Characterization of Atmospheric and Oceanic Phenomena. 2016.
    [69] 支冬, 马阎星, 马鹏飞, 等. 公里级湍流大气环境下光纤激光高效相干合成[J]. 红外与激光工程, 2019, 48:1005007 doi: 10.3788/IRLA201948.1005007

    Zhi Dong, Ma Yanxing, Ma Pengfei, et al. Efficient coherent beam combining of fiber laser array through km-scale turbulent atmosphere[J]. Infrared and Laser Engineering, 2019, 48: 1005007 doi: 10.3788/IRLA201948.1005007
    [70] Zuo Jing, Zou Fan, Zhou Xin, et al. Coherent combining of a large-scale fiber laser array over 2.1 km in turbulence based on a beam conformal projection system[J]. Optics Letters, 2022, 47(2): 365-368. doi: 10.1364/OL.446722
    [71] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189. doi: 10.1103/PhysRevA.45.8185
    [72] Dennis M R, O’Holleran K, Padgett M J. Singular optics: optical vortices and polarization singularities[J]. Progress in Optics, 2009, 53: 293-363.
    [73] Shen Yijie, Wang Xiejiao, Xie Zhenwei, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science & Applications, 2019, 8: 90.
    [74] Wang Jian, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488-496. doi: 10.1038/nphoton.2012.138
    [75] Padgett M, Bowman R. Tweezers with a twist[J]. Nature Photonics, 2011, 5(6): 343-348. doi: 10.1038/nphoton.2011.81
    [76] Lachinova S L, Vorontsov M A. Exotic laser beam engineering with coherent fiber-array systems[J]. Journal of Optics, 2013, 15: 105501. doi: 10.1088/2040-8978/15/10/105501
    [77] Chu Xiuxiang, Sun Quan, Wang Jing, et al. Generating a Bessel-Gaussian beam for the application in optical engineering[J]. Scientific Reports, 2016, 5: 18665. doi: 10.1038/srep18665
    [78] Xie Guodong, Liu Cong, Li Long, et al. Spatial light structuring using a combination of multiple orthogonal orbital angular momentum beams with complex coefficients[J]. Optics Letters, 2017, 42(5): 991-994. doi: 10.1364/OL.42.000991
    [79] Aksenov V P, Dudorov V V, Filimonov G A, et al. Vortex beams with zero orbital angular momentum and non-zero topological charge[J]. Optics & Laser Technology, 2018, 104: 159-163.
    [80] Zhi Dong, Hou Tianyue, Ma Pengfei, et al. Comprehensive investigation on producing high-power orbital angular momentum beams by coherent combining technology[J]. High Power Laser Science and Engineering, 2019, 7: e33. doi: 10.1017/hpl.2019.17
    [81] Yu Tao, Xia Hui, Xie Wenke, et al. Orbital angular momentum mode detection of the combined vortex beam generated by coherent combining technology[J]. Optics Express, 2020, 28(24): 35795-35806. doi: 10.1364/OE.409122
    [82] Hou Tianyue, Chang Qi, Yu Tao, et al. Switching the orbital angular momentum state of light with mode sorting assisted coherent laser array system[J]. Optics Express, 2021, 29(9): 13428-13440. doi: 10.1364/OE.422635
    [83] Veinhard M, Bellanger S, Daniault L, et al. Orbital angular momentum beams generation from 61 channels coherent beam combining femtosecond digital laser[J]. Optics Letters, 2021, 46(1): 25-28. doi: 10.1364/OL.405975
    [84] Adamov E V, Aksenov V P, Dudorov V V, et al. Controlling the spatial structure of vector beams synthesized by a fiber laser array[J]. Optics & Laser Technology, 2022, 154: 108351.
    [85] Long Jinhu, Hou Tianyue, Chang Qi, et al. Generation of optical vortex lattices by a coherent beam combining system[J]. Optics Letters, 2021, 46(15): 3665-3668. doi: 10.1364/OL.425186
    [86] Basistiy I V, Bazhenov V Y, Soskin M S, et al. Optics of light beams with screw dislocations[J]. Optics Communications, 1993, 103(5/6): 422-428.
    [87] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2): 161-204. doi: 10.1364/AOP.3.000161
    [88] Hou Tianyue, An Yi, Chang Qi, et al. Deep-learning-based phase control method for tiled aperture coherent beam combining systems[J]. High Power Laser Science and Engineering, 2019, 7: e59. doi: 10.1017/hpl.2019.46
    [89] Liu Renqi, Peng Chun, Liang Xiaoyan, et al. Coherent beam combination far-field measuring method based on amplitude modulation and deep learning[J]. Chinese Optics Letters, 2020, 18: 041402. doi: 10.3788/COL202018.041402
    [90] Wang Dan, Du Qiang, Zhou Tong, et al. Stabilization of the 81-channel coherent beam combination using machine learning[J]. Optics Express, 2021, 29(4): 5694-5709. doi: 10.1364/OE.414985
    [91] Mirigaldi A, Carbone M, Perrone G. Non-uniform adaptive angular spectrum method and its application to neural network assisted coherent beam combining[J]. Optics Express, 2021, 29(9): 13269-13287. doi: 10.1364/OE.423057
  • 加载中
图(12)
计量
  • 文章访问数:  872
  • HTML全文浏览量:  365
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-23
  • 修回日期:  2022-09-28
  • 录用日期:  2022-11-17
  • 网络出版日期:  2022-11-18
  • 刊出日期:  2023-03-30

目录

    /

    返回文章
    返回