留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微纳光纤镀铂金膜锁模光纤激光器

张澍霖 朱国利 董光焰

张澍霖, 朱国利, 董光焰. 微纳光纤镀铂金膜锁模光纤激光器[J]. 强激光与粒子束, 2023, 35: 031002. doi: 10.11884/HPLPB202335.220263
引用本文: 张澍霖, 朱国利, 董光焰. 微纳光纤镀铂金膜锁模光纤激光器[J]. 强激光与粒子束, 2023, 35: 031002. doi: 10.11884/HPLPB202335.220263
Zhang Shulin, Zhu Guoli, Dong Guangyan. All-fiber mode-locked laser using platinum film-coated microfiber[J]. High Power Laser and Particle Beams, 2023, 35: 031002. doi: 10.11884/HPLPB202335.220263
Citation: Zhang Shulin, Zhu Guoli, Dong Guangyan. All-fiber mode-locked laser using platinum film-coated microfiber[J]. High Power Laser and Particle Beams, 2023, 35: 031002. doi: 10.11884/HPLPB202335.220263

微纳光纤镀铂金膜锁模光纤激光器

doi: 10.11884/HPLPB202335.220263
详细信息
    作者简介:

    张澍霖,shulin_laser@163.com

  • 中图分类号: O432.1+2

All-fiber mode-locked laser using platinum film-coated microfiber

  • 摘要: 采用有限元法仿真了微纳光纤中模式在镀膜前后的能量、电场及有效折射率变化,分析了HE11、TE01、HE21和TM01模式在微纳光纤中的传输特性以及与铂金膜的相互作用原理。采用缓冲氧化物刻蚀液制作了微纳光纤并用离子喷溅法镀铂金膜,得到直径为13.2 μm、铂金膜厚度为40 nm的微纳光纤器件,测试了其可饱和吸收特性,调制深度和饱和强度分别为0.57%和0.8 MW/cm2。制作了全光纤锁模激光器,锁模阈值为180 mW。锁模脉冲重复频率为17.93 MHz,脉冲宽度为103 ps,中心波长为1031.6 nm,半高宽约为3.5 nm。
  • 图  1  Pt-FCM的横截面结构示意图及超细化仿真网格

    Figure  1.  Schematic diagram of the cross-sectional structure of Pt-FCM and ultra-fine simulation mesh

    图  2  Pt-FCM中模式的有效折射率实部和限制损耗随包层半径的变化

    Figure  2.  Real part of effective refractive index and confinement loss as a function of cladding radius for modes in Pt-FCM

    图  3  微纳光纤镀膜前后模式功率密度、电场分布及有效折射率

    Figure  3.  Energy, electric field and effective refractive index changes of the modes in the microfiber before and after coating

    图  4  半径为6.6 μm的微纳光纤镀膜前后TE01、HE11、TM01和HE21模的能量密度一维分布

    Figure  4.  Intensity distribution of TE01, HE11, TM01 and HE21 mode before and after coating of microfiber

    图  5  Pt-FCM的扫描电镜图

    Figure  5.  SEM images of the Pt-FCM and elemental spectrum of the Pt-FCM

    图  6  Pt-FCM的偏振特性测量装置

    Figure  6.  Schematic of polarization measurement

    图  7  旋转HWP2后由PM1得到的出射光功率变化和旋转格兰-泰勒棱镜后由PM2得到的出射光功率变化

    Figure  7.  Output power with different polarization angle incident to Pt-FCM by rotating the HWP2 and rotating the Glan-Taylor prism

    图  8  铂膜的非线性透过率

    Figure  8.  Nonlinear optical transmittance of the Pt film

    图  9  全光纤锁模激光器

    Figure  9.  Schematic of the all-fiber mode-locked laser

    图  10  光纤激光器的输出功率随泵浦功率和时间的变化

    Figure  10.  Output power of the laser changes with pump power and time

    图  11  脉冲宽度随泵浦功率的变化

    Figure  11.  Pulse width dependent on pump power

    图  12  光纤激光器的锁模特性

    Figure  12.  Mode-locked characteristics of the fiber laser

  • [1] Phillips K C, Gandhi H H, Mazur E, et al. Ultrafast laser processing of materials: a review[J]. Advances in Optics and Photonics, 2015, 7(4): 684-712. doi: 10.1364/AOP.7.000684
    [2] Malinauskas M, Žukauskas A, Hasegawa S, et al. Ultrafast laser processing of materials: from science to industry[J]. Light: Science & Applications, 2016, 5: 16133.
    [3] Zipfel W R, Williams R M, Webb W W. Nonlinear magic: multiphoton microscopy in the biosciences[J]. Nature Biotechnology, 2003, 21(11): 1369-1377. doi: 10.1038/nbt899
    [4] Lu Yu, Wong T T W, Chen Feng, et al. Compressed ultrafast spectral-temporal photography[J]. Physical Review Letters, 2019, 122: 193904. doi: 10.1103/PhysRevLett.122.193904
    [5] Udem T, Holzwarth R, Hänsch T W. Optical frequency metrology[J]. Nature, 2002, 416(6877): 233-237. doi: 10.1038/416233a
    [6] Yoshii K, Nomura J, Taguchi K, et al. Optical frequency metrology study on nonlinear processes in a waveguide device for ultrabroadband comb generation[J]. Physical Review Applied, 2019, 11: 054031. doi: 10.1103/PhysRevApplied.11.054031
    [7] Martinez A, Sun Zhipei. Nanotube and graphene saturable absorbers for fibre lasers[J]. Nature Photonics, 2013, 7(11): 842-845. doi: 10.1038/nphoton.2013.304
    [8] Chen Bohua, Zhang Xiaoyan, Wu Kan, et al. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2[J]. Optics Express, 2015, 23(20): 26723-26737. doi: 10.1364/OE.23.026723
    [9] Ahmad H, Reduan S A, Ali Z A, et al. C-band Q-switched fiber laser using titanium dioxide (TiO2) as saturable absorber[J]. IEEE Photonics Journal, 2016, 8: 1500107.
    [10] Luo Zhengqian, Huang Yizhong, Weng Jian, et al. 1.06 μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber[J]. Optics Express, 2013, 21(24): 29516-29522. doi: 10.1364/OE.21.029516
    [11] Chen Yu, Jiang Guobao, Chen Shuqing, et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation[J]. Optics Express, 2015, 23(10): 12823-12833. doi: 10.1364/OE.23.012823
    [12] Ahmad H, Hassan H, Safaei R, et al. Q-switched fiber laser using carbon platinum saturable absorber on side-polished fiber[J]. Chinese Optics Letters, 2017, 15: 090601. doi: 10.3788/COL201715.090601
    [13] Guo Hao, Feng Ming, Song Feng, et al. Q-switched erbium-doped fiber laser based on silver nanoparticles as a saturable absorber[J]. IEEE Photonics Technology Letters, 2015, 28(2): 135-138.
    [14] Jiang Tao, Xu Yang, Tian Qijun, et al. Passively Q-switching induced by gold nanocrystals[J]. Applied Physics Letters, 2012, 101: 151122. doi: 10.1063/1.4759120
    [15] Kang Zhe, Guo Xingyuan, Jia Zhixu, et al. Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser[J]. Optical Materials Express, 2013, 3(11): 1986-1991. doi: 10.1364/OME.3.001986
    [16] Kang Zhe, Li Q, Gao X J, et al. Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength[J]. Laser Physics Letters, 2014, 11: 035102. doi: 10.1088/1612-2011/11/3/035102
    [17] Gao Yachen, Zhang Xueru, Li Yuliang, et al. Saturable absorption and reverse saturable absorption in platinum nanoparticles[J]. Optics Communications, 2005, 251(4/6): 429-433.
    [18] Yuzaile Y R, Awang N A, Zalkepali N U H H, et al. Pulse compression in Q-switched fiber laser by using platinum as saturable absorber[J]. Optik, 2019, 179: 977-985. doi: 10.1016/j.ijleo.2018.11.057
    [19] Ganeev R A, Tugushev R I, Usmanov T. Application of the nonlinear optical properties of platinum nanoparticles for the mode locking of Nd: glass laser[J]. Applied Physics B, 2009, 94(4): 647-651. doi: 10.1007/s00340-009-3371-9
    [20] Zhang Yimin, Li Hongxun, Dai Chuansheng, et al. All-fiber high-order mode laser using a metal-clad transverse mode filter[J]. Optics Express, 2018, 26(23): 29679-29686. doi: 10.1364/OE.26.029679
    [21] Dong Chunhua, Zou Changling, Ren Xifeng, et al. In-line high efficient fiber polarizer based on surface plasmon[J]. Applied Physics Letters, 2012, 100: 041104. doi: 10.1063/1.3678591
  • 加载中
图(13)
计量
  • 文章访问数:  639
  • HTML全文浏览量:  248
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-26
  • 修回日期:  2022-11-02
  • 录用日期:  2022-11-09
  • 网络出版日期:  2022-11-11
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回