留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多胞超导射频腔整腔调谐场平坦度模拟研究

王岩 马震宇 徐凯 常强 张志刚 罗琛 黄雪芳 郑湘 赵申杰 赵玉彬

王岩, 马震宇, 徐凯, 等. 多胞超导射频腔整腔调谐场平坦度模拟研究[J]. 强激光与粒子束, 2023, 35: 074001. doi: 10.11884/HPLPB202335.220265
引用本文: 王岩, 马震宇, 徐凯, 等. 多胞超导射频腔整腔调谐场平坦度模拟研究[J]. 强激光与粒子束, 2023, 35: 074001. doi: 10.11884/HPLPB202335.220265
Wang Yan, Ma Zhenyu, Xu Kai, et al. Simulation studies on the field flatness tuning of multi-cell superconducting radio-frequency cavities[J]. High Power Laser and Particle Beams, 2023, 35: 074001. doi: 10.11884/HPLPB202335.220265
Citation: Wang Yan, Ma Zhenyu, Xu Kai, et al. Simulation studies on the field flatness tuning of multi-cell superconducting radio-frequency cavities[J]. High Power Laser and Particle Beams, 2023, 35: 074001. doi: 10.11884/HPLPB202335.220265

多胞超导射频腔整腔调谐场平坦度模拟研究

doi: 10.11884/HPLPB202335.220265
基金项目: 上海市市级科技重大专项课题(2017SHZDZX02); 中国科学院横向科研项目(1102000554).
详细信息
    作者简介:

    王 岩,wangyan@zjlab.org.cn

    通讯作者:

    赵玉彬, zhaoyubin@zjlab.org.cn

  • 中图分类号: TN815

Simulation studies on the field flatness tuning of multi-cell superconducting radio-frequency cavities

  • 摘要:

    简述了用于分析多胞超导射频腔场平坦度调节的微扰理论,推导了场平坦度的理论计算方法。针对超导腔微小范围内的纵向拉伸/挤压,进行理论计算分析与结构-电磁多物理场模拟计算以求得变形前后腔体场平坦度及其变化趋势,所得结果表明:理论分析结果与仿真计算结果基本一致,进一步深入验证了该微扰理论的有效性。在多胞超导射频腔的加工制造、运行过程中的关键环节,国际上广泛采用的两种方法——包括预调谐过程中的“先单胞后整腔”和运行时腔体调谐过程中“整腔拉伸/挤压”方法,基于分析结果,这两种方法正确性和合理性均在理论上得以验证。在超导射频腔腔型设计的第一阶段——单胞优化设计过程中加入结构-电磁多物理场分析,可使腔型优化设计过程更加高效,结果表明:优化后的单胞(包括端胞和中间胞)的频率敏感度应尽可能接近或相等,以保证在腔变形期间始终保持较好的场平坦度。

  • 图  1  含束管N胞射频腔的等效电路模型

    Figure  1.  The model of equivalent circuit for N-cell cavity with beam tubes

    图  2  工作于具有理想平坦度的π模基模场条件下的N胞射频腔等效电路

    Figure  2.  The model of equivalent circuit for N-cell cavity operating in fundamental π-mode with ideal field flatness

    图  3  N胞射频腔端腔胞及束管等效电路的等效变换

    Figure  3.  Equivalent transformation of the models of equivalent circuit for end-cell and tube of N-cell cavity

    图  4  不同的A=B时,场平坦度随中间腔胞微扰的变化规律

    Figure  4.  Field flatness F variation with minor perturbation emid of cell capacity, given different A=B

    图  5  不同中间腔胞微扰 $ {e}_{\mathrm{m}\mathrm{i}\mathrm{d}} $ B=0.5情况下,场平坦度随A的变化规律

    Figure  5.  Field flatness F variation with A, given B=0.5, for different minor perturbation of mid-cell emid

    图  6  椭球型腔半胞结构参数示意图

    Figure  6.  The geometry of a half-cell of an elliptical cavity

    图  7  无加强筋和有加强筋的1.3 GHz 9-cell裸腔结构示意图

    Figure  7.  Structure diagram of 1.3 GHz 9-cell superconducting radio-frequency cavities without/with enhancement rings

    表  1  XFEL的主直线加速器、TRIUMF 电子直线加速器和用于SHINE 的注入器候选的1.3 GHz 9-cell腔型结构参数尺寸

    Table  1.   Geometry parameters of three types of 1.3 GHz 9-cell cavities for main LINAC of XFEL, TRIUMF e-Linac, and for injector of SHINE as a candidate

    Types of cavity cell Re/mm Ri/mm A/mm B/mm a/mm b/mm L/mm
    Middle half-cell XFEL 103.3 35.0 42.0 42.0 12.0 19.0 57.7
    TRIUMF 103.3 35.0 42.0 42.0 12.0 19.0 57.7
    SHINE 103.3 35.0 42.0 42.0 12.0 19.0 57.7
    Pick-up side
    half-cell
    XFEL 103.3 39.0 42.0 42.0 9.0 12.8 56.7
    TRIUMF 103.3 39.0 42.0 42.0 9.0 12.8 56.7
    SHINE 103.3 39.0 42.0 42.0 9.0 12.8 56.7
    Coupler side
    half-cell
    XFEL 103.3 39.0 40.34 40.34 10.0 13.5 55.7
    TRIUMF 103.3 48.0 45.0 40.5 10.0 13.5 56.0
    SHINE 103.3 55.0 48.9 36.7 9.0 12.8 58.1
    下载: 导出CSV

    表  3  不同调谐力对应的三种无加强筋1.3 GHz 9-cell腔型结构的腔胞微扰量理论计算值

    Table  3.   Minor perturbations due to different tuning force for XFEL, TRIUMF and SHINE candidate 1.3 GHz 9-cell SRF cavities without enhancement rings

    Tuning force/kN (squeezed) emid/105 eend1/105 eend2/105
    0, undeformed XFEL 0 0 0
    TRIUMF 0 0 0
    SHINE 0 0 0
    2, deformed XFEL 4.877 4.149 4.149
    TRIUMF 4.877 4.149 4.133
    SHINE 4.877 4.149 3.062
    4, deformed XFEL 10.327 7.946 7.946
    TRIUMF 10.327 7.946 7.931
    SHINE 10.327 7.946 5.894
    下载: 导出CSV

    表  6  不同调谐力对应的三种有加强筋1.3 GHz 9-cell腔型结构的腔胞微扰量理论计算值

    Table  6.   Minor perturbations due to different tuning force for XFEL, TRIUMF and SHINE candidate 1.3 GHz 9-cell SRF cavities with enhancement rings

    Tuning force/kN (squeezed) emid/105 eend1/105 eend2/105
    0, undeformed XFEL 0 0 0
    TRIUMF 0 0 0
    SHINE 0 0 0
    2, deformed XFEL 2.526 2.620 2.620
    TRIUMF 2.526 2.620 2.796
    SHINE 2.526 2.620 3.326
    4, deformed XFEL 5.208 5.485 5.485
    TRIUMF 5.208 5.485 5.610
    SHINE 5.208 5.485 6.668
    6, deformed XFEL 7.820 8.333 8.333
    TRIUMF 7.820 8.333 8.441
    SHINE 7.820 8.333 10.028
    下载: 导出CSV

    表  2  不同调谐力对三种无加强筋1.3 GHz 9-cell腔型结构腔胞0模与π模谐振频率的影响

    Table  2.   Variation of resonant frequency due to different tuning force for XFEL, TRIUMF and SHINE 1.3 GHz 9-cell SRF cavities without enhancement rings

    Tuning force/kN (squeezed) Types of cavity cell Resonant frequency/MHz
    0-mode π-mode
    0, undeformed Middle half-cell XFEL 1275.748 1300
    TRIUMF 1275.748 1300
    SHINE 1275.748 1300
    Pick-up side half-cell with beam pipe XFEL 1287.78 1300
    TRIUMF 1287.78 1300
    SHINE 1287.78 1300
    Coupler side half-cell with beam pipe XFEL 1287.78 1300
    TRIUMF 1288.136 1300
    SHINE 1288.827 1300
    2, deformed Middle half-cell XFEL 1275.468 1299.745
    TRIUMF 1275.468 1299.745
    SHINE 1275.468 1299.745
    Pick-up side half-cell with beam pipe XFEL 1287.544 1299.78
    TRIUMF 1287.544 1299.78
    SHINE 1287.544 1299.78
    Coupler side half-cell with beam pipe XFEL 1287.544 1299.78
    TRIUMF 1287.901 1299.781
    SHINE 1288.653 1299.836
    4, deformed Middle half-cell XFEL 1275.155 1299.569
    TRIUMF 1275.155 1299.569
    SHINE 1275.155 1299.569
    Pick-up side half-cell with beam pipe XFEL 1287.328 1299.574
    TRIUMF 1287.328 1299.574
    SHINE 1287.328 1299.574
    Coupler side half-cell with beam pipe XFEL 1287.328 1299.574
    TRIUMF 1287.685 1299.574
    SHINE 1288.492 1299.68
    下载: 导出CSV

    表  4  不同调谐力对应的三种无加强筋1.3 GHz 9-cell射频腔场平坦度的理论计算值与仿真计算值结果对比

    Table  4.   Results comparison of field flatness between theoretical and simulation calculations for XFEL, TRIUMF and SHINE 1.3 GHz 9-cell SRF cavities without enhancement rings

    Tuning force/kN (squeezed) F, (Field flatness)
    Theoretical calculation value Simulation calculation value
    0, undeformed XFEL 100% 99.95%
    TRIUMF 100% 99.94%
    SHINE 100% 99.92%
    2, deformed XFEL 98.79% 97.7%
    TRIUMF 98.74% 97.6%
    SHINE 95.35% 93.9%
    4, deformed XFEL 96.03% 96.8%
    TRIUMF 95.99% 96.7%
    SHINE 89.86% 89.0%
    下载: 导出CSV

    表  5  不同调谐力对三种有加强筋1.3 GHz 9-cell腔型结构腔胞0模与π模谐振频率的影响

    Table  5.   Variation of resonant frequency due to different tuning force for XFEL, TRIUMF and SHINE 1.3 GHz 9-cell SRF cavities with enhancement rings

    Tuning force/kN (squeezed) Types of cavity cell Resonant frequency/MHz
    0-mode π-mode
    0, undeformed Middle half-cell XFEL 1275.748 1300
    TRIUMF 1275.748 1300
    SHINE 1275.748 1300
    Pick-up side half-cell with beam pipe XFEL 1287.78 1300
    TRIUMF 1287.78 1300
    SHINE 1287.78 1300
    Coupler side half-cell with beam pipe XFEL 1287.78 1300
    TRIUMF 1288.136 1300
    SHINE 1288.827 1300
    2, deformed Middle half-cell XFEL 1275.603 1299.857
    TRIUMF 1275.603 1299.857
    SHINE 1275.603 1299.857
    Pick-up side half-cell with beam pipe XFEL 1287.631 1299.855
    TRIUMF 1287.631 1299.855
    SHINE 1287.631 1299.855
    Coupler side half-cell with beam pipe XFEL 1287.631 1299.855
    TRIUMF 1287.977 1299.848
    SHINE 1288.638 1299.865
    4, deformed Middle half-cell XFEL 1275.449 1299.708
    TRIUMF 1275.449 1299.708
    SHINE 1275.449 1299.708
    Pick-up side half-cell with beam pipe XFEL 1287.468 1299.695
    TRIUMF 1287.468 1299.695
    SHINE 1287.468 1299.695
    Coupler side half-cell with beam pipe XFEL 1287.468 1299.695
    TRIUMF 1287.817 1299.688
    SHINE 1288.448 1299.733
    6, deformed Middle half-cell XFEL 1275.299 1299.558
    TRIUMF 1275.299 1299.558
    SHINE 1275.299 1299.558
    Pick-up side half-cell with beam pipe XFEL 1287.306 1299.534
    TRIUMF 1287.306 1299.534
    SHINE 1287.306 1299.534
    Coupler side half-cell with beam pipe XFEL 1287.306 1299.534
    TRIUMF 1287.656 1299.529
    SHINE 1288.257 1299.600
    下载: 导出CSV

    表  7  不同调谐力对应的三种有加强筋1.3 GHz 9-cell射频腔场平坦度理论计算值与仿真计算值结果对比

    Table  7.   Results comparison of field flatness between theoretical and simulation calculations for XFEL, TRIUMF and SHINE candidate 1.3 GHz 9-cell SRF cavities with enhancement rings

    Tuning force/kN (squeezed) F, (Field flatness)
    Theoretical calculation value Simulation calculation value
    0, undeformed XFEL 100% 99.95%
    TRIUMF 100% 99.94%
    SHINE 100% 99.92%
    2, deformed XFEL 99.84% 99.16%
    TRIUMF 99.27% 98.77%
    SHINE 97.35% 98.48%
    4, deformed XFEL 99.54% 98.85%
    TRIUMF 99.17% 98.26%
    SHINE 95.48% 96.66%
    6, deformed XFEL 99.14% 98.32%
    TRIUMF 98.85% 97.56%
    SHINE 93.44% 94.27%
    下载: 导出CSV
  • [1] Aune B, Bandelmann R, Bloess D, et al. Superconducting TESLA cavities[J]. Physical Review Accelerators and Beams, 2000, 3: 092001. doi: 10.1103/PhysRevSTAB.3.092001
    [2] Padamsee H, Knobloch J, Hays T. RF superconductivity for accelerators[M]. New York: Wiley, 1998.
    [3] Tajima T, Furuya T, Suzuki T. Pre-tuning of TRISTAN superconducting RF cavities[C]//Proceedings of the 4th Workshop on RF Superconductivity. 1989: 821-847.
    [4] Sekutowicz J, Chen Yinghua, Wei Yixiang. A different tuning method for accelerating cavities[C]//Proceedings of the 4th Workshop on RF Superconductivity. 1989: 849-857.
    [5] 朱航, 翟纪元, 戴建枰. 9-cell超导腔快速预调谐方法研究[J]. 强激光与粒子束, 2022, 34:104015

    Zhu Hang, Zhai Jiyuan, Dai Jianping. Research on fast pre-tuning method of 9-cell superconducting cavities[J]. High Power Laser and Particle Beams, 2022, 34: 104015
    [6] Sun An, Wang Haipeng, Wu Genfa. Effect of the tuner on the field flatness of SNS superconducting RF cavities[C]//Proceedings of LINAC 2004. 2004: 815-817.
    [7] Sun An. Superconducting RF cavity frequency and field distribution sensitivity simulation[C]//Proceedings of 2005 Particle Accelerator Conference. 2005: 4194-4196.
    [8] 李波, 刘华昌, 王云, 等. CSNS-II超导椭球腔形变电场平坦度仿真分析[J]. 强激光与粒子束, 2021, 33:034001 doi: 10.11884/HPLPB202133.200259

    Li Bo, Liu Huachang, Wang Yun, et al. Simulating analysis on electric field flatness of deformed superconducting elliptical cavity for CSNS-II linac[J]. High Power Laser and Particle Beams, 2021, 33: 034001 doi: 10.11884/HPLPB202133.200259
    [9] Posen S, Liepe M. Mechanical optimization of superconducting cavities in continuous wave operation[J]. Physical Review Accelerators and Beams, 2012, 15: 022002. doi: 10.1103/PhysRevSTAB.15.022002
    [10] Zvyagintsev V, Beard C D, Grassellino A, et al. Nine-cell elliptical cavity development at TRIUMF[C]//Proceedings of SRF2011. 2011: 107-109.
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  413
  • HTML全文浏览量:  160
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-26
  • 修回日期:  2023-01-14
  • 录用日期:  2023-01-11
  • 网络出版日期:  2023-03-29
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回