留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

回流罩结构Z-箍缩实验的数值模拟

阚明先 贾月松 张南川 傅贞 章征伟

阚明先, 贾月松, 张南川, 等. 回流罩结构Z-箍缩实验的数值模拟[J]. 强激光与粒子束, 2023, 35: 025003. doi: 10.11884/HPLPB202335.220271
引用本文: 阚明先, 贾月松, 张南川, 等. 回流罩结构Z-箍缩实验的数值模拟[J]. 强激光与粒子束, 2023, 35: 025003. doi: 10.11884/HPLPB202335.220271
Kan Mingxian, Jia Yuesong, Zhang Nanchuan, et al. Simulation of Z-pinch experiments with a reflux hood structure[J]. High Power Laser and Particle Beams, 2023, 35: 025003. doi: 10.11884/HPLPB202335.220271
Citation: Kan Mingxian, Jia Yuesong, Zhang Nanchuan, et al. Simulation of Z-pinch experiments with a reflux hood structure[J]. High Power Laser and Particle Beams, 2023, 35: 025003. doi: 10.11884/HPLPB202335.220271

回流罩结构Z-箍缩实验的数值模拟

doi: 10.11884/HPLPB202335.220271
详细信息
    作者简介:

    阚明先,kanmx@caep.cn

  • 中图分类号: O361.3

Simulation of Z-pinch experiments with a reflux hood structure

  • 摘要: 采用二维磁驱动数值模拟程序(MDSC2)对大电流脉冲功率装置FP-2上的回流罩结构Z-箍缩实验exp90和exp60进行了数值模拟。数值模拟表明,回流罩结构Z-箍缩实验测量电流/回路电流不是负载套筒电流,回流罩结构Z-箍缩实验中回路电流不完全从负载套筒通过,回路电流和负载套筒电流之间存在一个结构系数,提出了边界磁场强度与回路电流关系的新公式。采用具有结构系数的边界磁场强度公式和磁流体力学程序能正确模拟exp90和exp60两个回流罩结构Z-箍缩实验,模拟的套筒内径运动速度和实验测量速度相一致。回流罩结构Z-箍缩实验的结构系数为一常数,仅由回流罩的初始结构确定。90 mm和60 mm内直径套筒的结构系数分别为0.87和0.90。在套筒初始厚度、绝缘材料等其它条件相同的情况下,套筒内径越大,回流罩结构Z-箍缩实验的结构系数越小。
  • 图  1  回流罩结构Z-箍缩实验示意图

    Figure  1.  Cross section schematic of reflux hood on FP-2 facility

    图  2  exp90实验加载电流

    Figure  2.  Measured current in exp90 experiment

    图  3  模拟的exp90实验的套筒内径速度

    Figure  3.  Simulated inner radius’s velocity in exp90 experiment

    图  4  exp60实验加载电流

    Figure  4.  Measured current in exp60 experiment

    图  5  模拟的exp60实验的套筒内径速度

    Figure  5.  Simulated inner radius’s velocity in exp60 experiment

    图  6  改进公式后exp90实验的模拟速度

    Figure  6.  Simulated velocity in exp90 by the improved formula

    图  7  改进公式后exp60实验的模拟速度

    Figure  7.  Simulated velocity in exp60 by the improved formula

  • [1] Reisman D B, Toor A, Cauble R C. Magnetically driven isentropic compression experiments on the Z accelerator[J]. Journal of Applied Physics, 2001, 89(3): 1625-1633. doi: 10.1063/1.1337082
    [2] 王桂吉, 赵剑衡, 孙承纬, 等. 磁驱动准等熵加载装置CQ-4的加载能力及主要应用[J]. 实验力学, 2015, 30(2):252-262 doi: 10.7520/1001-4888-15-001

    Wang Guiji, Zhao Jianheng, Sun Chengwei, et al. On the loading capability and main application of magnetically driven quasi-isentropic compression device CQ-4[J]. Journal of Experimental Mechanics, 2015, 30(2): 252-262 doi: 10.7520/1001-4888-15-001
    [3] Sun Qizhi, Jia Yuesong, Zhang Zhengwei, et al. Cylindrical metal liner implosion at extremes of pressure and material velocity on an intense pulsed power facility-FP-2[J]. Review of Scientific Instruments, 2022, 93: 013904. doi: 10.1063/5.0064238
    [4] Knudson M D, Lemke R W, Hayes D B, et al. Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique[J]. Journal of Applied Physics, 2003, 94(7): 4420-4431. doi: 10.1063/1.1604967
    [5] Lemke R W, Knudson M D, Bliss D E, et al. Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments[J]. Journal of Applied Physics, 2005, 98: 073530. doi: 10.1063/1.2084316
    [6] Knudson M D, Hanson D L, Bailey J E, et al. Equation of state measurements in liquid deuterium to 70 GPa[J]. Physical Review Letters, 2001, 87: 225501. doi: 10.1103/PhysRevLett.87.225501
    [7] Knudson M D, Hanson D L, Bailey J E, et al. Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa[J]. Physical Review Letters, 2003, 90: 035505. doi: 10.1103/PhysRevLett.90.035505
    [8] Knudson M D, Hanson D L, Bailey J E, et al. Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques[J]. Physical Review B, 2004, 69: 144209. doi: 10.1103/PhysRevB.69.144209
    [9] Vogler T J, Ao T, Asay J R. High-pressure strength of aluminum under quasi-isentropic loading[J]. International Journal of Plasticity, 2009, 25(4): 671-694. doi: 10.1016/j.ijplas.2008.12.003
    [10] Robinson A C, Strack O E, Drake R R, et al. ALEGRA: an arbitrary Lagrangian-Eulerian multimaterial, multiphysics code[C]//Proposed for presentation at the AIAA Aerospace Sciences Meeting. 2008.
    [11] Frese M H. MACH2: a two-dimensional magnetohydrodynamic simulation code for complex experimental configurations[R]. AMRC-R-874, 1987.
    [12] Chittenden J P, Lebedev S V, Jennings C A, et al. X-ray generation mechanisms in three-dimensional simulations of wire array Z-pinches[J]. Plasma Physics and Controlled Fusion, 2004, 46(12B): B457-B476. doi: 10.1088/0741-3335/46/12B/039
    [13] 丁宁, 邬吉明, 杨震华, 等. Z箍缩内爆的MARED程序1维模拟分析[J]. 强激光与粒子束, 2008, 20(2):212-218

    Ding Ning, Wu Jiming, Yang Zhenhua, et al. Simulation of Z-pinch implosion using MARED code[J]. High Power Laser and Particle Beams, 2008, 20(2): 212-218
    [14] 阚明先, 蒋吉昊, 王刚华, 等. 衬套内爆ALE方法二维MHD数值模拟[J]. 四川大学学报(自然科学学报), 2007, 44(1):91-96

    Kan Mingxian, Jiang Jihao, Wang Ganghua, et al. ALE simulation 2D MHD for liner[J]. Journal of Sichuan University (Natural Science Edition), 2007, 44(1): 91-96
    [15] 阚明先, 王刚华, 赵海龙, 等. 磁驱动飞片二维磁流体力学数值模拟[J]. 强激光与粒子束, 2013, 25(8):2137-2141 doi: 10.3788/HPLPB20132508.2137

    Kan Mingxian, Wang Ganghua, Zhao Hailong, et al. Two-dimensional magneto-hydrodynamic simulations of magnetically accelerated flyer plates[J]. High Power Laser and Particle Beams, 2013, 25(8): 2137-2141 doi: 10.3788/HPLPB20132508.2137
    [16] 阚明先, 王刚华, 赵海龙, 等. 金属电阻率模型[J]. 爆炸与冲击, 2013, 33(3):282-286 doi: 10.3969/j.issn.1001-1455.2013.03.010

    Kan Mingxian, Wang Ganghua, Zhao Hailong, et al. Electrical resistivity model for metals[J]. Explosion and Shock Waves, 2013, 33(3): 282-286 doi: 10.3969/j.issn.1001-1455.2013.03.010
    [17] Kan Mingxian, Zhang Zhaohui, Xiao Bo, et al. Simulation of magnetically driven flyer plate experiments with an improved magnetic field boundary formula[J]. High Energy Density Physics, 2018, 26: 38-43. doi: 10.1016/j.hedp.2017.12.002
    [18] 阚明先, 段书超, 王刚华, 等. 磁驱动飞片发射实验结构系数初步研究[J]. 强激光与粒子束, 2020, 32:085002 doi: 10.11884/HPLPB202032.200072

    Kan Mingxian, Duan Shuchao, Wang Ganghua, et al. Structure coefficient in magnetically driven flyer plate experiment[J]. High Power Laser and Particle Beams, 2020, 32: 085002 doi: 10.11884/HPLPB202032.200072
    [19] 阚明先, 王刚华, 刘利新, 等. 带窗口磁驱动准等熵压缩实验模拟[J]. 强激光与粒子束, 2021, 33:055001 doi: 10.11884/HPLPB202133.200329

    Kan Mingxian, Wang Ganghua, Liu Lixin, et al. Simulation of magnetically driven quasi-isentropic compression experiments with windows[J]. High Power Laser and Particle Beams, 2021, 33: 055001 doi: 10.11884/HPLPB202133.200329
    [20] Zhou Quan, Zou Xiaobing, Wang Xinxin. An indirect iterative method to couple the generator to the MHD load for future Z-pinch[J]. IEEE Transactions on Plasma Science, 2020, 48(10): 3418-3423. doi: 10.1109/TPS.2020.3010961
  • 加载中
图(7)
计量
  • 文章访问数:  507
  • HTML全文浏览量:  216
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-30
  • 修回日期:  2022-10-13
  • 录用日期:  2022-10-19
  • 网络出版日期:  2022-10-22
  • 刊出日期:  2023-01-14

目录

    /

    返回文章
    返回