留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于衍射光学元件的激光相干合成研究进展

何兵 李炳霖 杨依枫 刘美忠

何兵, 李炳霖, 杨依枫, 等. 基于衍射光学元件的激光相干合成研究进展[J]. 强激光与粒子束, 2023, 35: 041002. doi: 10.11884/HPLPB202335.220282
引用本文: 何兵, 李炳霖, 杨依枫, 等. 基于衍射光学元件的激光相干合成研究进展[J]. 强激光与粒子束, 2023, 35: 041002. doi: 10.11884/HPLPB202335.220282
He Bing, Li Binglin, Yang Yifeng, et al. Coherent beam combining of fiber laser array based on diffractive optical element[J]. High Power Laser and Particle Beams, 2023, 35: 041002. doi: 10.11884/HPLPB202335.220282
Citation: He Bing, Li Binglin, Yang Yifeng, et al. Coherent beam combining of fiber laser array based on diffractive optical element[J]. High Power Laser and Particle Beams, 2023, 35: 041002. doi: 10.11884/HPLPB202335.220282

基于衍射光学元件的激光相干合成研究进展

doi: 10.11884/HPLPB202335.220282
基金项目: 国家重点研发计划项目(2018YFB0504500); 中国科学院青年创新促进项目(2020252)
详细信息
    作者简介:

    何 兵,bryanho@siom.ac.cn

  • 中图分类号: TN248.1

Coherent beam combining of fiber laser array based on diffractive optical element

  • 摘要: 从衍射光学元件的基本原理出发,围绕连续波和脉冲波两大应用领域,综述了国内外基于衍射光学元件实现共孔径相干合成的研究进展。在国内,上海光学精密机械研究所分别实现了连续光和脉冲光的合成,连续光实现了206 W的输出功率,光束质量1.38,合束效率29.6%;脉冲光实现了峰值功率1.02 kW,重复频率2.2 MHz的ns级脉冲相干合成光束,合束效率61%。在国外,连续光方面实现了5 kW量级的合成光输出,合束效率82%;脉冲光方面实现了平均功率150 mW,重复频率100 MHz的fs级脉冲相干合成光束,合束效率83.4%。最后对基于衍射光学元件的激光相干合成技术的未来发展做出了展望,相信在不久的将来,基于衍射光学元件的相干合成技术会不断发展,逐渐突破技术瓶颈,从而为更多的应用领域奠定坚实基础。
  • 图  1  方形平顶光束和环形平顶光束

    Figure  1.  Top-hatted beam with square and circlar beam profile

    图  2  二值光栅相干合成技术共腔结构注入锁定结构示意图

    Figure  2.  Schematic diagram of injection locking structure of binary grating coherent beam combining (CBC) technology co-cavity structure

    图  3  三路单模光纤激光的相干合成基本原理与实验装置

    Figure  3.  Basic principle and experimental setup of coherent beam combining of three-channel single-mode fiber lasers

    图  4  基于达曼光栅的半导体激光器相干合成原理

    Figure  4.  Principle of coherent beam combining of semiconductor lasers based on Damman gratings

    图  5  光栅的被动相干光束合成实验装置

    Figure  5.  Experimental setup and spectrogram of passive coherent beam combining based on quantum cascade lasers (QCLs) and Dammann gratings

    图  6  全光反馈环形腔实验装置与实验结果图

    Figure  6.  All-optical feedback ring cavity experimental setup and experimental results

    图  7  基于DOE的主动相干合成系统装置

    Figure  7.  DOE-based active coherent beam combining system

    图  8  DOE光束合成原理示意图

    Figure  8.  Schematic diagram of DOE coherent beam combining

    图  9  二维DOE相干合成系统结构

    Figure  9.  Two-dimensional DOE coherent beam combining system

    图  10  二维DOE相干合成结果示意图

    Figure  10.  Results of two-dimensional DOE coherent beam combining

    图  11  2.4 kW DOE相干合成实验结构图

    Figure  11.  2.4 kW DOE coherent beam combining experiment structure diagram

    图  12  4.9 kW DOE相干合成实验结构

    Figure  12.  Structure diagram of 4.9 kW DOE coherent beam combining system

    图  13  4路超短脉冲衍射相干合成实验装置

    Figure  13.  Experimental setup of two-dimensional combination of four ultrashort pulsed beams using a diffractive optic pair

    图  14  8路超短脉冲衍射相干合成实验装置及原理图

    Figure  14.  Experimental setup of 8-array ultrashort pulse diffraction coherent beam combining

    图  15  DOE2分束形成5×5子光束阵列,子光束在合成前后的光斑图样

    Figure  15.  Formation of the 5 × 5 uncombined beam array exiting DOE2, with a 3 × 3 incident beam array

    图  16  基于模式识别8路衍射相干合成实验装置

    Figure  16.  Experimental setup of deterministic stabilization of eight-way 2D diffractive beam combining using pattern recognition

    图  17  81路衍射相干合成验证系统和SLM产生9×9光束的全息图

    Figure  17.  SLM combiner experiment and hologram on SLM for generating 9×9 beams

    图  18  输出为81路光束的神经网络结构图、光束相位模式及衍射强度模式

    Figure  18.  Structure of the neural network, with interference patterns (17×17) as input and the corresponding 81-beam phases array (9×9) as the output

    图  19  3路平铺孔径阵列相干合成远场图样(23 W平均输出功率)

    Figure  19.  Far-field interference pattern of three tiled aperture pulsed beamlets by an all-optical feedback loop

    图  20  相干合成光束5个脉冲的序列图

    Figure  20.  Measured pulse shape of the combined beam in five cycles

    表  1  DOE连续光相干合成代表性研究成果

    Table  1.   Representative research results of DOE CW CBC

    yearinstitutionresultreference
    2008 Northrop Grumman 5 fiber lasers with 109 mW overall power, M2=1.04, combination efficiency is 91.4% [53]
    2012 Massachusetts Institute of Technology 5 fiber lasers with 1.93 kW overall power, M2=1.1,
    combination efficiency is 79%
    [54]
    2012 Northrop Grumman 15 fiber lasers with 600 W overall power, M2=1.1,
    combination efficiency is 68%
    [55]
    2014 Northrop Grumman 3 fiber lasers with 2.4 kW overall power, M2=1.2,
    combination efficiency is 80%
    [56]
    2016 Air Force Research Laboratory 5 fiber lasers with 4.9 kW overall power, M2=1.1,
    combination efficiency is 82%
    [57-58]
    下载: 导出CSV

    表  2  DOE脉冲光相干合成代表性研究成果

    Table  2.   Representative research results of DOE pulse CBC

    Yearinstitutionresultreference
    2014Shanghai Insititute of Optics and Fine Mechanics,
    Chinese Academy of Sciences
    channel number is 2; tp=9.6 ns; fp=2.2 MHz; Pp=1.02 kW; η=61%[64]
    2017Lawrence Berkeley National Laboratorychannel number is 4; tp=120 fs; fp=100 MHz; Pa=150 mW; η=83.4%[59]
    2018Lawrence Berkeley National Laboratorychannel number is 8; tp=120 fs; fp=100 MHz; η=85.4%[60]
    2019Lawrence Berkeley National Laboratorychannel number is 8; tp=100 fs; η=84.6%[61]
    2021Air Force Research Laboratorychannel number is 81; η=60.4%[62]
    下载: 导出CSV
  • [1] Anderegg J, Brosnan S, Cheung E, et al. Coherently coupled high-power fiber arrays[C]//Proceedings of SPIE 6102. 2006: 61020U.
    [2] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives [Invited][J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92. doi: 10.1364/JOSAB.27.000B63
    [3] Nilsson J, Payne D N. High-power fiber lasers[J]. Science, 2011, 332(6032): 921-922. doi: 10.1126/science.1194863
    [4] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241. doi: 10.1109/JSTQE.2014.2321279
    [5] Shiner B. The impact of fiber laser technology on the world wide material processing market[C]//Proceedings of the CLEO: 2013. AF2J. 1.
    [6] Augst S J, Fan T Y, Sanchez A. Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers[J]. Optics Letters, 2004, 29(5): 474-476. doi: 10.1364/OL.29.000474
    [7] Yu C X, Augst S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 2011, 36(14): 2686-2688. doi: 10.1364/OL.36.002686
    [8] Xiao R, Hou J, Liu M, et al. Coherent combining technology of master oscillator power amplifier fiber arrays[J]. Optics Express, 2008, 16(3): 2015-2022. doi: 10.1364/OE.16.002015
    [9] Desfarges-Berthelemot A, Kermène V, Sabourdy D, et al. Coherent combining of fibre lasers[J]. Comptes Rendus Physique, 2006, 7(2): 244-253. doi: 10.1016/j.crhy.2006.01.019
    [10] Kozlov V A, Hernández-Cordero J, Morse T F. All-fiber coherent beam combining of fiber lasers[J]. Optics Letters, 1999, 24(24): 1814-1816. doi: 10.1364/OL.24.001814
    [11] Uberna R, Bratcher A, Alley T G, et al. Coherent combination of high power fiber amplifiers in a two-dimensional re-imaging waveguide[J]. Optics Express, 2010, 18(13): 13547-13553. doi: 10.1364/OE.18.013547
    [12] Müller M, Klenke A, Steinkopff A, et al. 3.5 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2018, 43(24): 6037-6040. doi: 10.1364/OL.43.006037
    [13] Müller M, Aleshire C, Klenke A, et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2020, 45(11): 3083-3086. doi: 10.1364/OL.392843
    [14] Wei Liwei, Cleva F, Man C N. Coherently combined master oscillator fiber power amplifiers for Advanced Virgo[J]. Optics Letters, 2016, 41(24): 5817-5820. doi: 10.1364/OL.41.005817
    [15] Ma P F, Zhou P, Su R T, et al. Coherent polarization beam combining of eight fiber lasers using single-frequency dithering technique[J]. Laser Physics Letters, 2012, 9(6): 456-458. doi: 10.7452/lapl.201210016
    [16] Klenke A, Breitkopf S, Kienel M, et al. 530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 2013, 38(13): 2283-2285. doi: 10.1364/OL.38.002283
    [17] Ma Pengfei, Zhou Pu, Wang Xiaolin, et al. Coherent polarization beam combining of four 200-W-level fiber amplifiers[J]. Applied Physics Express, 2014, 7: 022703. doi: 10.7567/APEX.7.022703
    [18] Müller M, Kienel M, Klenke A, et al. 1kW 1 mJ eight-channel ultrafast fiber laser[J]. Optics Letters, 2016, 41(15): 3439-3442. doi: 10.1364/OL.41.003439
    [19] Müller M, Klenke A, Stark H, et al. 16 channel coherently-combined ultrafast fiber laser[C]//Advanced Solid State Lasers 2017.
    [20] 刘泽金, 周朴, 马鹏飞, 等. 4路高功率窄线宽、线偏振光纤放大器相干偏振合成实现5 kW级高亮度激光输出[J]. 中国激光, 2017, 44:0415004 doi: 10.3788/CJL201744.0415004

    Liu Zejin, Zhou Pu, Ma Pengfei, et al. 4channels of high-power narrow linewidth, linear polarization fiber amplifiers coherent polarization synthesis to achieve 5 kW high-brightness laser output[J]. Chinese Journal of Lasers, 2017, 44: 0415004 doi: 10.3788/CJL201744.0415004
    [21] 金国藩, 严瑛白, 邬敏贤. 二元光学[M]. 北京: 国防工业出版社, 1998

    Jin Guofan, Yan Yingbai, Wu Minxian. Binary optics[M]. Beijing: National Defense Industry Press, 1998
    [22] 邬敏贤, 严瑛白, 金国藩, 等. 二元光学理论与基础技术研究[J]. 光电子·激光, 1997, 8(5):411 doi: 10.16136/j.joel.1997.05.019

    Wu Minxian, Yan Yingbai, Jin Guofan, et al. Research on binary optics theory and basic technology[J]. Optoelectronics·Laser, 1997, 8(5): 411 doi: 10.16136/j.joel.1997.05.019
    [23] Dammann H, Klotz E. Coherent optical generation and inspection of two-dimensional periodic structures[J]. Optica Acta: International Journal of Optics, 1977, 24(4): 505-515. doi: 10.1080/713819570
    [24] Zhou Changhe, Liu Liren. Numerical study of Dammann array illuminators[J]. Applied Optics, 1995, 34(26): 5961-5969. doi: 10.1364/AO.34.005961
    [25] Zhou Changhe, Xi Peng, Dai Enwen, et al. Phase gratings made with inductively coupled plasma technology[C]//Proceedings of SPIE. 2001.
    [26] Bi Qunyu, Zhou Changhe, Zheng Jiangjun, et al. Inverse symmetric Dammann gratings[J]. Optics Communications, 2009, 282(5): 742-747. doi: 10.1016/j.optcom.2008.11.063
    [27] Krackhardt U, Mait J N, Streibl N. Upper bound on the diffraction efficiency of phase-only fanout elements[J]. Applied Optics, 1992, 31(1): 27-37. doi: 10.1364/AO.31.000027
    [28] Ehbets P, Herzig H P, Prongué D, et al. High-efficiency continuous surface-relief gratings for two-dimensional array generation[J]. Optics Letters, 1992, 17(13): 908-910. doi: 10.1364/OL.17.000908
    [29] 席鹏, 周常河, 赵帅, 等. 64×64点阵达曼光栅的设计与实现[J]. 中国激光, 2001, 28(4):369-371 doi: 10.3321/j.issn:0258-7025.2001.04.022

    Xi Peng, Zhou Changhe, Zhao Shuai, et al. Design and fabrication of 64×64 spot array Dammann grating[J]. Chinese Journal of Lasers, 2001, 28(4): 369-371 doi: 10.3321/j.issn:0258-7025.2001.04.022
    [30] Prongué D, Herzig H P, Dändliker R, et al. Optimized kinoform structures for highly efficient fan-out elements[J]. Applied Optics, 1992, 31(26): 5706-5711. doi: 10.1364/AO.31.005706
    [31] Hergenhan G, Lücke B, Brauch U. Coherent coupling of vertical-cavity surface-emitting laser arrays and efficient beam combining by diffractive optical elements: concept and experimental verification[J]. Applied Optics, 2003, 42(9): 1667-1680. doi: 10.1364/AO.42.001667
    [32] Weingartner W, Schröder K, Schuöcker D. Active length control of two phase locked CO2 lasers with a digital signal processor[J]. Review of Scientific Instruments, 2000, 71(9): 3298-3305. doi: 10.1063/1.1288263
    [33] Brignon A, Huignard J P. Phase conjugate laser optics[M]. Hoboken: Wiley, 2004.
    [34] Cox J A. Overview of diffractive optics at Honeywell[C]//Proceedings of SPIE 0884, Computer-Generated Holography II. 1988.
    [35] McHugh T J, Levenstein H A. An overview of binary optics at the Perkin-Elmer Corporation[C]//Proceedings of SPIE. 1988.
    [36] Zhao Tianzhuo, Yu Jin, Li Chaoyang, et al. Beam shaping and compensation for high-gain Nd: glass amplification[J]. Journal of Modern Optics, 2013, 60(2): 109-115. doi: 10.1080/09500340.2012.743607
    [37] Wang Dong, Zhang Jian, Wang Hao, et al. Variable shape or variable diameter flattop beam tailored by using an adaptive weight FFT-based iterative algorithm and a phase-only liquid crystal spatial light modulator[J]. Optics Communications, 2012, 285(24): 5044-5050. doi: 10.1016/j.optcom.2012.08.081
    [38] Hu Xinyao, Zhao Qian, Yu Panpan, et al. Dynamic shaping of orbital-angular-momentum beams for information encoding[J]. Optics Express, 2018, 26(2): 1796-1808. doi: 10.1364/OE.26.001796
    [39] Spagnolo G S, Ambrosini D. Diffractive optical element-based profilometer for surface inspection[J]. Optical Engineering, 2001, 40(1): 44-52. doi: 10.1117/1.1331270
    [40] Romero L A, Dickey F M. Theory of optimal beam splitting by phase gratings. I. One-dimensional gratings[J]. Journal of the Optical Society of America A, 2007, 24(8): 2280-2295. doi: 10.1364/JOSAA.24.002280
    [41] Romero L A, Dickey F M. Theory of optimal beam splitting by phase gratings. II. Square and hexagonal gratings[J]. Journal of the Optical Society of America A, 2007, 24(8): 2296-2312. doi: 10.1364/JOSAA.24.002296
    [42] Leger J R, Swanson G J, Veldkamp W B. Coherent beam addition of GaAlAs lasers by binary phase gratings[J]. Applied Physics Letters, 1986, 48(14): 888-890. doi: 10.1063/1.96648
    [43] Veldkamp W B, Leger J R, Swanson G J. Coherent summation of laser beams using binary phase gratings[J]. Optics Letters, 1986, 11(5): 303-305. doi: 10.1364/OL.11.000303
    [44] Leger J R, Swanson G J, Veldkamp W B. Coherent laser addition using binary phase gratings[J]. Applied Optics, 1987, 26(20): 4391-4399. doi: 10.1364/AO.26.004391
    [45] Harrison J, Leger J R, Rines G A, et al. Coherent summation of injection-locked, diode-pumped Nd: YAG ring lasers[J]. Optics Letters, 1988, 13(2): 111-113. doi: 10.1364/OL.13.000111
    [46] 闫爱民, 刘立人, 戴恩文, 等. 相干激光阵列的逆达曼光栅合束孔径装填实验研究[J]. 光学学报, 2010, 30(6):1822-1826 doi: 10.3788/AOS20103006.1822

    Yan Aimin, Liu Liren, Dai Enwen, et al. Experimental study on beam combination and aperture filling of coherent laser arrays using conjugate Dammann grating[J]. Acta Optica Sinica, 2010, 30(6): 1822-1826 doi: 10.3788/AOS20103006.1822
    [47] Morel J, Woodtli A, Dändliker R. Coherent coupling of an array of Nd3+-doped single-mode fiber lasers by use of an intracavity phase grating[J]. Optics Letters, 1993, 18(18): 1520-1522. doi: 10.1364/OL.18.001520
    [48] Pabœuf D, Emaury F, De Rossi S, et al. Coherent beam superposition of ten diode lasers with a Dammann grating[J]. Optics Letters, 2010, 35(10): 1515-1517. doi: 10.1364/OL.35.001515
    [49] Bloom G, Larat C, Lallier E, et al. Passive coherent beam combining of quantum-cascade lasers with a Dammann grating[J]. Optics Letters, 2011, 36(19): 3810-3812. doi: 10.1364/OL.36.003810
    [50] Liu Houkang, He Bing, Zhou Jun, et al. Experiments and perturbative analysis of Dammann-grating-based aperture filling in a passive coherent beam combination[J]. Journal of Lightwave Technology, 2014, 32(12): 2220-2227. doi: 10.1109/JLT.2014.2322863
    [51] Glova A F. Phase locking of optically coupled lasers[J]. Quantum Electronics, 2003, 33(4): 283-306. doi: 10.1070/QE2003v033n04ABEH002415
    [52] Glova A F, Lysikov A Y, Musena E I. Phase locking of 2D laser arrays by the spatial filter method[J]. Quantum Electronics, 2002, 32(3): 277-278. doi: 10.1070/QE2002v032n03ABEH002179
    [53] Cheung E C, Ho J G, Goodno G D, et al. Diffractive-optics-based beam combination of a phase-locked fiber laser array[J]. Optics Letters, 2008, 33(4): 354-356. doi: 10.1364/OL.33.000354
    [54] Redmond S M, Ripin D J, Yu C X, et al. Diffractive coherent combining of a 2.5 kW fiber laser array into a 1.9 kW Gaussian beam[J]. Optics Letters, 2012, 37(14): 2832-2834. doi: 10.1364/OL.37.002832
    [55] Thielen P A, Ho J G, Burchman D A, et al. Two-dimensional diffractive coherent combining of 15 fiber amplifiers into a 600 W beam[J]. Optics Letters, 2012, 37(18): 3741-3743. doi: 10.1364/OL.37.003741
    [56] McNaught S J, Thielen P A, Adams L N, et al. Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 174-181. doi: 10.1109/JSTQE.2013.2296771
    [57] Flores A, Ehrehreich T, Holten R, et al. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light[C]//Proceedings of SPIE. 2016: 97281Y.
    [58] Flores A, Dajani I, Holten R, et al. Multi-kilowatt diffractive coherent combining of pseudorandom-modulated fiber amplifiers[J]. Optical Engineering, 2016, 55: 096101. doi: 10.1117/1.OE.55.9.096101
    [59] Zhou Tong, Sano T, Wilcox R. Coherent combination of ultrashort pulse beams using two diffractive optics[J]. Optics Letters, 2017, 42(21): 4422-4425. doi: 10.1364/OL.42.004422
    [60] Zhou Tong, Du Qiang, Sano T, et al. Two-dimensional combination of eight ultrashort pulsed beams using a diffractive optic pair[J]. Optics Letters, 2018, 43(14): 3269-3272. doi: 10.1364/OL.43.003269
    [61] Du Qiang, Zhou Tong, Doolittle L R, et al. Deterministic stabilization of eight-way 2D diffractive beam combining using pattern recognition[J]. Optics Letters, 2019, 44(18): 4554-4557. doi: 10.1364/OL.44.004554
    [62] Du Qiang, Wang Dan, Zhou Tong, et al. 81-beam coherent combination using a programmable array generator[J]. Optics Express, 2021, 29(4): 5407-5418. doi: 10.1364/OE.416499
    [63] Wang Dan, Du Qinag, Zhou Tong, et al. Stabilization of the 81-channel coherent beam combination using machine learning[J]. Optics Express, 2021, 29(4): 5694-5709. doi: 10.1364/OE.414985
    [64] Yang Yifeng, Zheng Ye, He Bing, et al. Passive phase locking of three nanosecond fiber amplifiers using a Dammann grating spatial filter[J]. Chinese Physics Letters, 2014, 31: 084206. doi: 10.1088/0256-307X/31/8/084206
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  803
  • HTML全文浏览量:  298
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-03
  • 修回日期:  2023-03-20
  • 录用日期:  2023-01-20
  • 网络出版日期:  2023-03-24
  • 刊出日期:  2023-03-30

目录

    /

    返回文章
    返回