留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

20 kV高压脉冲幅度校准装置设计

龙国浩 袁汉 何鹏 郭晓东 王凌云

龙国浩, 袁汉, 何鹏, 等. 20 kV高压脉冲幅度校准装置设计[J]. 强激光与粒子束, 2023, 35: 025005. doi: 10.11884/HPLPB202335.220298
引用本文: 龙国浩, 袁汉, 何鹏, 等. 20 kV高压脉冲幅度校准装置设计[J]. 强激光与粒子束, 2023, 35: 025005. doi: 10.11884/HPLPB202335.220298
Long Guohao, Yuan Han, He Peng, et al. Design of 20 kV high voltage pulse amplitude calibration device[J]. High Power Laser and Particle Beams, 2023, 35: 025005. doi: 10.11884/HPLPB202335.220298
Citation: Long Guohao, Yuan Han, He Peng, et al. Design of 20 kV high voltage pulse amplitude calibration device[J]. High Power Laser and Particle Beams, 2023, 35: 025005. doi: 10.11884/HPLPB202335.220298

20 kV高压脉冲幅度校准装置设计

doi: 10.11884/HPLPB202335.220298
详细信息
    作者简介:

    龙国浩,longghnuaa@163.com

    通讯作者:

    王凌云,101kpa@sina.com

  • 中图分类号: TM832

Design of 20 kV high voltage pulse amplitude calibration device

  • 摘要: 针对高压脉冲幅度的量值传递需求,开展了脉冲幅度1~20 kV、脉宽1~100 μs的高压脉冲幅度校准装置设计。校准装置以高压MOSFET器件为核心,搭建多级Marx结构实现高压脉冲成型,同时通过截尾回路的设计缩短脉冲下降时间,实现矩形脉冲波形的输出。在Marx结构基础上开展装置整体设计,通过触发脉冲信号及高压直流电源电压调节脉宽与幅度,通过隔离电源及光信号保证了高压隔离强度。装置采用高准确度高压探头和数据采集卡构成校准装置的内部测试系统,其测量值作为校准装置的标准量值,经评定装置脉冲幅度不确定度为2%,并通过两台比对法进行了验证。采用其他多型高压探头对校准装置进行实验测试,结果表明与低压脉冲校准源测试相比,高压脉冲可明显有效地表征高压探头的性能及测量准确度,同时本装置也可作为高压脉冲发生器应用于脉冲功率领域其他用途。
  • 图  1  多级固态开关Marx结构原理简图

    Figure  1.  Schematic diagram of multistage solid state switch Marx structure

    图  2  校准装置组成简图

    Figure  2.  Composition sketch of calibration device

    图  3  高压脉冲幅度校准装置实物图及输出波形图

    Figure  3.  Photo diagram and output waveform diagram of high voltage pulse amplitude calibration device

    表  1  多型高压探头测试数据表

    Table  1.   Multi-type high voltage probe test data table

    standard voltage/kVsupply voltage/kVvoltage of PVM-1/kVvoltage of DP20-20K-LVC/kVvoltage of P6015A/kV
    1 0.176 1.007 1.008 1.023
    6 1.050 6.052 6.052 6.027
    12 2.100 12.080 12.110 12.040
    18 3.200 18.150 19.620 17.780
    20 3.600 20.220 23.040 20.340
    下载: 导出CSV
  • [1] 刘锡三. 高功率脉冲技术[M]. 北京: 国防工业出版社, 2005.

    Liu Xisan. High pulsed power technology[M]. Beijing: National Defense Industry Press, 2005
    [2] 陈静, 周晓青. 基于固体开关器件的新型高压脉冲驱动源[J]. 现代电子技术, 2012, 35(4):208-210 doi: 10.3969/j.issn.1004-373X.2012.04.065

    Chen Jing, Zhou Xiaoqing. New high-voltage pulse driving source based on solid switch device[J]. Modern Electronics Technique, 2012, 35(4): 208-210 doi: 10.3969/j.issn.1004-373X.2012.04.065
    [3] 石小燕, 丁恩燕, 梁勤金, 等. 20kV/20kHz/100A高压脉冲源设计[J]. 强激光与粒子束, 2018, 30:045002 doi: 10.11884/HPLPB201830.170360

    Shi Xiaoyan, Ding Enyan, Liang Qinjin, et al. Design of 20kV/20kHz/100A high voltage pulse generator[J]. High Power Laser and Particle Beams, 2018, 30: 045002 doi: 10.11884/HPLPB201830.170360
    [4] Ryoo H J, Kim J S, Rim G H, et al. Development of 60kV pulse power generator based on IGBT stacks for wide application[C]//Conference Record of the 2006 Twenty-Seventh IEEE International Power Modulator Symposium. 2006: 511-514.
    [5] Redondo L M. A DC voltage-multiplier circuit working as a high-voltage pulse generator[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2725-2729. doi: 10.1109/TPS.2010.2050495
    [6] Rao Junfeng, Liu Kefu, Qiu Jian. All solid-state nanosecond pulsed generators based on Marx and magnetic switches[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(4): 1123-1128. doi: 10.1109/TDEI.2013.6571426
    [7] 王冬冬. 大功率固态开关在脉冲功率应用中的特性研究[D]. 上海: 复旦大学, 2011.

    Wang Dongdong. Characteristic analysis of high power solid state switches in pulsed power applications[D]. Shanghai: Fudan University, 2011
    [8] 董守龙, 姚陈果, 杨楠, 等. 基于Marx电路的全固态纳秒脉冲等离子体射流装置的研制[J]. 电工技术学报, 2016, 31(24):35-44 doi: 10.19595/j.cnki.1000-6753.tces.2016.24.004

    Dong Shoulong, Yao Chenguo, Yang Nan, et al. The development of solid-state nanosecond pulsed plasma jet apparatus based on Marx structure[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 35-44 doi: 10.19595/j.cnki.1000-6753.tces.2016.24.004
    [9] Liu Kefu, Luo Yan, Qiu Jian. A repetitive high voltage pulse adder based on solid state switches[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(4): 1076-1080. doi: 10.1109/TDEI.2009.5211857
    [10] 孙国勇. 高性能驱动关键技术研究[D]. 北京: 北京交通大学, 2018.

    Sun Guoyong. Research on key technologies of high-performance drive[D]. Beijing: Beijing Jiaotong University, 2018
    [11] 李洪涛, 王传伟, 王凌云, 等. 500 kV全固态Marx发生器[J]. 强激光与粒子束, 2012, 24(4):917-920 doi: 10.3788/HPLPB20122404.0917

    Li Hongtao, Wang Chuanwei, Wang Lingyun, et al. 500 kV all-solid-state Marx generator[J]. High Power Laser and Particle Beams, 2012, 24(4): 917-920 doi: 10.3788/HPLPB20122404.0917
    [12] 姚陈果, 章锡明, 李成祥, 等. 基于现场可编程门阵列的全固态高压ns脉冲发生器[J]. 高电压技术, 2012, 38(4):929-934

    Yao Chenguo, Zhang Ximing, Li Chengxiang, et al. All solid-state high-voltage nanosecond pulse generator based on FPGA[J]. High Voltage Engineering, 2012, 38(4): 929-934
    [13] 陆福敏. 脉冲参数计量方法综述[J]. 上海计量测试, 2008, 35(2):2-7 doi: 10.3969/j.issn.1673-2235.2008.02.001

    Lu Fumin. Review of the measuring methods of pulse parameters[J]. Shanghai Measurement and Testing, 2008, 35(2): 2-7 doi: 10.3969/j.issn.1673-2235.2008.02.001
    [14] 李启丙. 数字示波器中波形参数自动测量算法研究[J]. 计算技术与自动化, 2011, 30(3):87-89 doi: 10.3969/j.issn.1003-6199.2011.03.020

    Li Qibing. The research on waveform parameter automatic measurement algorithm of digital oscilloscope[J]. Computing Technology and Automation, 2011, 30(3): 87-89 doi: 10.3969/j.issn.1003-6199.2011.03.020
    [15] GJB 2749A-2009, 军事计量测量标准建立与保持通用要求[S].

    GJB 2749A-2009, General requirement of establishment and conservation of measurement standard for military metrology[S]
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  508
  • HTML全文浏览量:  222
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-23
  • 修回日期:  2022-11-22
  • 网络出版日期:  2022-11-24
  • 刊出日期:  2023-01-14

目录

    /

    返回文章
    返回