留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学相控阵技术研究进展与发展趋势

田博宇 彭英楠 胡奇琪 段佳著 骆永全 赵祥杰 张大勇

田博宇, 彭英楠, 胡奇琪, 等. 光学相控阵技术研究进展与发展趋势[J]. 强激光与粒子束, 2023, 35: 041001. doi: 10.11884/HPLPB202335.220305
引用本文: 田博宇, 彭英楠, 胡奇琪, 等. 光学相控阵技术研究进展与发展趋势[J]. 强激光与粒子束, 2023, 35: 041001. doi: 10.11884/HPLPB202335.220305
Tian Boyu, Peng Yingnan, Hu Qiqi, et al. Review of optical phased array technology and its applications[J]. High Power Laser and Particle Beams, 2023, 35: 041001. doi: 10.11884/HPLPB202335.220305
Citation: Tian Boyu, Peng Yingnan, Hu Qiqi, et al. Review of optical phased array technology and its applications[J]. High Power Laser and Particle Beams, 2023, 35: 041001. doi: 10.11884/HPLPB202335.220305

光学相控阵技术研究进展与发展趋势

doi: 10.11884/HPLPB202335.220305
详细信息
    作者简介:

    田博宇,tby_scu@163.com

    通讯作者:

    赵祥杰,zxjdouble@163.com

    张大勇,zdywxl874@sohu.com

  • 中图分类号: TN29

Review of optical phased array technology and its applications

  • 摘要: 光学相控阵技术具有响应速度快、系统紧凑、功能多样和控制灵活等优点,在众多科学技术领域得到了广泛的应用。在近50年来的光学相控阵研究与应用中,涌现出了众多卓越的成果。为了对光学相控阵领域的发展进行梳理,简要回顾了光学相控阵技术的历史,并论述了光学相控阵技术的基本原理。从光束发射与接收等不同应用场景的角度,结合笔者的思考,深入介绍了光学相控阵在高品质的光源技术、激光相干合成技术、光束扫描技术、大气链路畸变控制技术以及合成孔径探测与成像技术多个领域的发展现状,并最后对光学相控阵技术的瓶颈与未来的发展研究趋势进行了评述。
  • 图  1  光学相控阵的用途分类

    Figure  1.  Classification and applications of optical phased array

    图  2  一维相控阵原理

    Figure  2.  Principle of optical phased array (1D)

    图  3  DARPA在光学相控阵技术领域的研究历程

    Figure  3.  Optical phased array projects carried out by DARPA

    图  4  APPLE系统基本原理示意图

    Figure  4.  Schematic diagram of APPLE system

    图  5  Excalibur系统实物样机

    Figure  5.  Prototype of Excalibur system

    图  6  板条固体激光器系统示意图

    Figure  6.  Schematic diagram of solid-state slab lasers

    图  7  5.2 kW全光纤激光振荡器结构

    Figure  7.  5.2 kW all-fiber MOPA configuration

    图  8  美国Northrop Grumman公司100 kW固体激光系统装置

    Figure  8.  100 kW solid-state laser system by Northrop Grumman

    图  9  107 路光纤激光相干合成系统结构图及实验结果

    Figure  9.  107-channel fiber laser coherent combining system

    图  10  美国林肯实验室4 kW光纤激光相干合成系统原理示意图

    Figure  10.  4 kW fiber laser coherent beam combining by Lincoln Lab. MIT

    图  11  美国Raytheon公司研制的一维液晶光学相控阵原理

    Figure  11.  One-dimensional liquid crystal optical phased array by Raytheon

    图  12  北卡罗莱纳州立大学大角度一维液晶相控阵器件

    Figure  12.  Wide-angle 1D liquid crystal optical phased array by North Carolina State University

    图  13  64路波导相控阵180°视场一维相控阵

    Figure  13.  64-channel 180° waveguide optical phased array

    图  14  南加州大学基于SOI CMOS的集成波导相控阵

    Figure  14.  CMOS waveguide optical phased array by University of Southern California

    图  15  代顿大学7路相干合成实验装置

    Figure  15.  7-channel coherent beam combining system by University of Dayton

    图  16  代顿大学21路相干合成实验装置(2016)

    Figure  16.  Experimental setup of 21-channel coherent beam combining system by University of Dayton

    图  17  中国科学院光电技术研究所57 孔径光纤激光相控阵自适应光学系统

    Figure  17.  57-channel TIL system by Institute of Optics and Electronics

    图  18  MMT望远镜系统

    Figure  18.  MMT telescope system

    图  19  詹姆斯韦伯太空望远镜

    Figure  19.  James Webb Space Telescope

    表  1  各类激光光源技术的对比

    Table  1.   Contrast of different laser sources

    typepowerfeaturecompactnessapplicability in OPA
    gas laser >500 kW extremely high power
    large volume
    extremely low ×
    chemical laser >MW extremely high power
    large volume
    extremely low ×
    solid-state laser >100 kW high power
    compact structure
    high
    fiber laser ~10 kW high power
    flexible
    higher
    semiconductor laser ~100 W highly compact
    high efficiency
    extremely high
    下载: 导出CSV

    表  2  单路固体激光代表性研究成果[45-49]

    Table  2.   Representative research results of solid-state lasers

    yeartypeinstitutionpower/kWbeam quality
    2009slabNorthrop Grumman , USA15.31.58
    2010slabNorth China Research Institute of Electro-Optics, China11.04.8
    2011slabChina Academy of Engineering Physics, China11.37.56
    2012diskBoeing, USA30.0< 2
    2015diskGeneral Atomics, USA150.0
    2018slabChina Academy of Engineering Physics, China22.33.3
    2018diskChina Academy of Engineering Physics, China9.814.7
    2019slabTechnical Institute of Physics and Chemistry, China60.0
    2021waveguideChina Academy of Engineering Physics, China10.0< 3
    下载: 导出CSV

    表  3  单路光纤激光代表性研究成果[53-63]

    Table  3.   Representative research results of fiber lasers

    yeartypeinstitutionpower/kWbeam quality
    2016monolithic fiberFujikura Ltd., Japan21.2
    2016National University of Defense Technology, China21.6
    2017Fujikura Ltd., Japan31.3
    2017National University of Defense Technology, China3.051.3
    2018Fujikura Ltd., Japan51.3
    2018National University of Defense Technology, China5.22.2
    2020Fujikura Ltd., Japan8
    2020National University of Defense Technology, China72.4
    2021National University of Defense Technology, China61.3
    2015MOPANational University of Defense Technology, China3.151.6
    2016Massachusetts Institute of Technology, USA3.11.15
    2017Tianjin University, China8.054
    2018China Academy of Engineering Physics, China11.23
    2019Shanghai Institute of Optics and Fine Mechanics, China10.14
    2021China Academy of Engineering Physics, China5.071.252
    2021National University of Defense Technology, China61.36
    下载: 导出CSV

    表  4  激光相干合成代表性研究成果[91-104]

    Table  4.   Representative research results of coherent beam combining

    yeartypeinstitutionpower/kWnumber of channels
    2008solid-state laserNorthrop Grumman, USA302
    2009Northrop Grumman, USA100 (Record)8
    2011fiber laserThales Research & Technology, France64
    2011National University of Defense Technology, China1.089
    2011Massachusetts Institute of Technology, USA48
    2011University of Dayton, USA7
    2014Northrop Grumman, USA2.43
    2015Massachusetts Institute of Technology, USA4442
    2016University of Dayton, USA21
    2019National University of Defense Technology, China60
    2019National University of Defense Technology, China87
    2020Thales Research & Technology, France0.10561
    2020Civan Advanced Technologies, Israel1637
    2020National University of Defense Technology, China107 (record)
    下载: 导出CSV

    表  5  相控阵光束扫描技术特点对比与主要发展趋势分析

    Table  5.   Contrast of optical phased arrays and corresponding development trend

    typematurityfeaturefuture trends
    liquid crystal OPAhighmature fabrication technology
    suitable for high-power application
    large aperture
    high damage threshold
    large range
    waveguide OPAlowcompactness
    large view field
    high frequency
    more channels
    larger view field
    higher frequency
    MEMS OPAlowhigh efficiency
    fast response
    more channels
    novel OPAflexiblemore advantages integration
    下载: 导出CSV

    表  6  基于目标在回路的大气畸变控制技术代表性研究成果[144-148]

    Table  6.   Representative research results of atmospheric distortion correction based on TIL

    yearinstitutenumber of channelsexperimental environment
    2011University of Dayton, USA77 km outdoor
    2016217 km outdoor
    2012Institute of Optics and Electronics, China75 m in Lab. (without turbulence)
    201870.2 km outdoor
    2021192 km outdoor
    2021512.1 km outdoor
    2011National University of Defense Technology, China210 m in Lab.(without turbulence)
    2012910 m in Lab.(without turbulence)
    201860.8 km outdoor
    下载: 导出CSV
  • [1] 徐龙道. 物理学词典[M]. 北京: 科学出版社, 2004

    Xu Longdao. Dictionary of physics[M]. Beijing: Science Press, 2004
    [2] Mahan A I, Bitterli C V, Cannon S M. Far-field diffraction patterns of single and multiple apertures bounded by arcs and radii of concentric circles[J]. Journal of the Optical Society of America, 1964, 54(6): 721-732. doi: 10.1364/JOSA.54.000721
    [3] Friis H T, Feldman C B. A multiple unit steerable antenna for short-wave reception[J]. Proceedings of the Institute of Radio Engineers, 1937, 25(7): 841-917.
    [4] 赵志超. 导弹防御雷达网数据融合技术研究[D]. 长沙: 国防科技大学, 2010

    Zhao Zhichao. Study on data fusion techniques of missile defense radar network[D]. Changsha: National University of Defense Technology, 2010
    [5] Meyer R A. Optical beam steering using a multichannel lithium tantalate crystal[J]. Applied Optics, 1972, 11(3): 613-616. doi: 10.1364/AO.11.000613
    [6] Chang Shuo, Wang Zhaokun, Wang D N, et al. Tunable and dual-wavelength mode-locked Yb-doped fiber laser based on graded-index multimode fiber device[J]. Optics & Laser Technology, 2021, 140: 107081.
    [7] Wu Bo, Zhang Bin, Liu Weijie, et al. Recoverable and rewritable waveguide beam splitters fabricated by tailored femtosecond laser writing of lithium tantalate crystal[J]. Optics & Laser Technology, 2022, 145: 107500.
    [8] Zhu Shuangqi, Xu Zhentao, Zhang Hao, et al. Liquid crystal integrated metadevice for reconfigurable hologram displays and optical encryption[J]. Optics Express, 2021, 29(6): 9553-9564. doi: 10.1364/OE.419914
    [9] Hsu C P, Li Boda, Solano-Rivas B, et al. A review and perspective on optical phased array for automotive LiDAR[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27: 8300416.
    [10] Lu Ping, Xu Weihan, Zhu Chen, et al. Integrated multi-beam optical phased array based on a 4 × 4 Butler matrix[J]. Optics Letters, 2021, 46(7): 1566-1569. doi: 10.1364/OL.419828
    [11] Fathi H, Närhi M, Gumenyuk R. Towards ultimate high-power scaling: coherent beam combining of fiber lasers[J]. Photonics, 2021, 8: 566. doi: 10.3390/photonics8120566
    [12] Tang Mingyuan, Cao Jie, Hao Qun, et al. Wide range retina-like scanning based on liquid crystal optical phased array[J]. Optics and Lasers in Engineering, 2022, 151: 106885. doi: 10.1016/j.optlaseng.2021.106885
    [13] 耿超, 李枫, 黄冠, 等. 基于光纤自适应操控的激光相控阵技术研究进展(特邀)[J]. 红外与激光工程, 2018, 47:0103003 doi: 10.3788/IRLA201847.0103003

    Geng Chao, Li Feng, Huang Guan, et al. Research Progress of laser phased array technique based on fiber adaptive manipulation (Invited)[J]. Infrared and Laser Engineering, 2018, 47: 0103003 doi: 10.3788/IRLA201847.0103003
    [14] DeHainaut C R, Duneman D C, Dymale R C, et al. Wide field performance of a phased array telescope[J]. Optical Engineering, 1995, 34(3): 876-880. doi: 10.1117/12.196461
    [15] Qin Qi, Yan Fengping, Liu Yan, et al. Multi-wavelength thulium-doped fiber laser via a polarization-maintaining Sagnac loop mirror with a theta-shaped configuration[J]. Journal of Lightwave Technology, 2021, 39(13): 4517-4524. doi: 10.1109/JLT.2021.3072226
    [16] Ma Pengfei, Chang Hongxiang, Ma Yanxing, et al. 7.1 kW coherent beam combining system based on a seven-channel fiber amplifier array[J]. Optics & Laser Technology, 2021, 140: 107016.
    [17] Van Acoleyen K, Bogaerts W, Jágerská J, et al. Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator[J]. Optics Letters, 2009, 34(9): 1477-1479. doi: 10.1364/OL.34.001477
    [18] Wang Ke, Yuan Zeshi, Wong E, et al. Experimental demonstration of indoor infrared optical wireless communications with a silicon photonic integrated circuit[J]. Journal of Lightwave Technology, 2019, 37(2): 619-626. doi: 10.1109/JLT.2018.2889252
    [19] He Jingwen, Dong Tao, Xu Yue. Review of photonic integrated optical phased arrays for space optical communication[J]. IEEE Access, 2020, 8: 188284-188298. doi: 10.1109/ACCESS.2020.3030627
    [20] Kendrick R L, Aubrun J N, Bell R, et al. Wide-field Fizeau imaging telescope: experimental results[J]. Applied Optics, 2006, 45(18): 4235-4240. doi: 10.1364/AO.45.004235
    [21] Corcoran C J, Pasch K A. Modal analysis of a self-Fourier laser cavity[J]. Journal of Optics A: Pure and Applied Optics, 2005, 7(5): L1. doi: 10.1088/1464-4258/7/5/L01
    [22] Minden M L. Passive coherent combining of fiber oscillators[C]//Proceedings of SPIE 6453, Fiber Lasers IV: Technology, Systems, and Applications. 2007: 6453.
    [23] Daniault L, Hanna M, Papadopoulos D N, et al. Passive coherent beam combining of two femtosecond fiber chirped-pulse amplifiers[J]. Optics Letters, 2011, 36(20): 4023-4025. doi: 10.1364/OL.36.004023
    [24] Kurtz R M, Pradhan R D, Tun N, et al. Mutual injection locking: a new architecture for high-power solid-state laser arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 578-586. doi: 10.1109/JSTQE.2005.850240
    [25] Wickham M, Anderegg J, Brosnan S, et al. Coherently coupled high power fiber arrays[C]//Advanced Solid-State Photonics 2004. 2004: 202-206.
    [26] Shay T M. Theory of electronically phased coherent beam combination without a reference beam[J]. Optics Express, 2006, 14(25): 12188-12195. doi: 10.1364/OE.14.012188
    [27] Yu C X, Kansky J E, Shaw S E J, et al. Coherent beam combining of a large number of PM fibers in a 2D fiberarray[C]//2006 Conference on Lasers and Electro-optics and 2006 Quantum Electronics and Laser Science Conference. 2006: 1-2.
    [28] Stockley J, Serati S. Advances in liquid crystal beam steering[C]//Proceedings of SPIE 5550, Free-Space Laser Communications IV. 2004: 32.
    [29] Wight D R, Heaton J M, Hughes B T, et al. Novel phased array optical scanning device implemented using GaAs/AlGaAs technology[J]. Applied Physics Letters, 1991, 59(8): 899-901. doi: 10.1063/1.105270
    [30] Van Acoleyen K, Rogier H, Baets R. Two-dimensional optical phased array antenna on silicon-on-insulator[J]. Optics Express, 2010, 18(13): 13655-13660. doi: 10.1364/OE.18.013655
    [31] Koh K H, Lee C. A two-dimensional MEMS scanning mirror using hybrid actuation mechanisms with low operation voltage[J]. Journal of Microelectromechanical Systems, 2012, 21(5): 1124-1135. doi: 10.1109/JMEMS.2012.2196497
    [32] Seldin J H, Paxman R G, Zarifis V G, et al. Closed-loop wavefront sensing for a sparse-aperture multitelescope array using broadband phase diversity[C]//Proceedings of SPIE 4091, Imaging Technology and Telescopes. 2000: 48-63.
    [33] Hill J M, Salinari P. The large binocular telescope project[C]//Proceedings of SPIE 5489, Ground-based Telescopes. 1998.
    [34] 马阎星. 光纤激光抖动法相干合成技术研究[D]. 长沙: 国防科学技术大学, 2014

    Ma Yanxing. Study on coherent beam combination of fiber laser based on dithering phase locking technology[D]. Changsha: National University of Defense Technology, 2014
    [35] Seifert L, Liesener J, Tiziani H J. Adaptive Shack-Hartmann sensor[C]//Proceedings of SPIE 5144, Optical Measurement Systems for Industrial Inspection III. 2003: 250-258.
    [36] Zhang Xiaofang, Guo Jing, Ren Xiaofeng, et al. The wavefront sensorless adaptive optics correction for a wide field of view optics system based on the SPGD algorithm[C]//Proceedings of SPIE 7849, Optical Design and Testing IV. 2010: 78492H.
    [37] Vorontsov M. Adaptive photonics phase-locked elements (APPLE): system architecture and wavefront control concept[C]//Proceedings of SPIE 5895, Target-in-the-Loop: Atmospheric Tracking, Imaging, and Compensation II. 2005.
    [38] Dorschner T A. Adaptive photonic phase locked elements: an overview[C]//MTO Symposium. 2007.
    [39] 刘泽金, 周朴, 许晓军, 等. 高平均功率光纤激光相干合成[M]. 长沙: 国防工业出版社, 2016

    Liu Zejing, Zhou Pu, Xu Xiaojun, et al. Coherent beam combining of high average power fiber lasers[M]. Changsha: National Defense Industry Press, 2016
    [40] Coffey V. High-energy lasers: new advances in defense applications[J]. Optics and Photonics News, 2014, 25(10): 28-35. doi: 10.1364/OPN.25.10.000028
    [41] Optics. org. DARPA extends laser weapon range[EB/OL]. (2014-03-11). https://optics.org/news/5/3/13.
    [42] Di Pengcheng, Li Xuepeng, Yang Jing, et al. High-power VCSEL-pumped slab laser with temperature fluctuation adaptability[J]. IEEE Photonics Technology Letters, 2021, 33(8): 395-398. doi: 10.1109/LPT.2021.3065510
    [43] Mi Shuyi, Li Junhui, Wei Disheng, et al. 105 W continuous-wave diode-pumped Tm: YAP slab laser with high beam quality[J]. Optics & Laser Technology, 2021, 138: 106847.
    [44] Machan J P, Long W H, Zamel J, et al. 5.4 kW diode-pumped, 2.4x diffraction-limited Nd: YAG laser for material processing[C]//Advanced Solid State Lasers 2002. 2002: PD1.
    [45] McNaught S J, Komine H, Weiss S B, et al. 100 kW coherently combined slab MOPAs[C]//2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference. 2009: 1-2.
    [46] Wang Dan, Du Yinglei, Wu Yingchen, et al. 20kW class high-beam-quality CW laser amplifier chain based on a Yb: YAG slab at room temperature[J]. Optics Letters, 2018, 43(16): 3838-3841. doi: 10.1364/OL.43.003838
    [47] Huang Lei, Zheng Yamin, Guo Yading, et al. 21.2 kW, 1.94 times diffraction-limit quasi-continuous-wave laser based on a multi-stage, power-scalable and adaptive optics controlled Yb: YAG master-oscillator-power-amplifier system[J]. Chinese Optics Letters, 2020, 18: 061402. doi: 10.3788/COL202018.061402
    [48] 郭亚丁. 高能固体激光自适应光学光束质量控制[C]//第四届大气光学及自适应光学技术发展研讨会. 2019

    Guo Yading. Beam quality control technology for high energy solid laser system[C]//The Fourth Symposium on the Development of Atmospheric Optics and Adaptive Optics. 2019
    [49] 尚建力, 王君涛, 彭万敬, 等. 二极管泵浦高能激光研究进展和展望[J]. 强激光与粒子束, 2022, 34:011007 doi: 10.11884/HPLPB202234.210530

    Shang Jianli, Wang Juntao, Peng Wanjing, et al. Research progress and prospects of laser diode pumped high-energy laser[J]. High Power Laser and Particle Beams, 2022, 34: 011007 doi: 10.11884/HPLPB202234.210530
    [50] Koester C J, Snitzer E. Amplification in a fiber laser[J]. Applied Optics, 1964, 3(10): 1182-1186. doi: 10.1364/AO.3.001182
    [51] Dominic V, MacCormack S, Waarts R, et al. 110 W fiber laser[C]//Conference on Lasers and Electro-Optics 1999. 1999: CPD11/1-CPD11/2.
    [52] Jeong Y, Sahu J K, Payne D N, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Optics Express, 2004, 12(25): 6088-6092. doi: 10.1364/OPEX.12.006088
    [53] Ikoma S, Nguyen H K, Kashiwagi M, et al. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing[C]//Proceedings of SPIE 10083, Fiber Lasers XIV: Technology and Systems. 2017: 100830Y.
    [54] Yang Baolai, Shi Chen, Zhang Hanwei, et al. Monolithic fiber laser oscillator with record high power[J]. Laser Physics Letters, 2018, 15: 075106. doi: 10.1088/1612-202X/aac19f
    [55] 奚小明, 王鹏, 杨保来, 等. 全光纤激光振荡器输出功率突破7kW[J]. 中国激光, 2021, 48:0116001 doi: 10.3321/j.issn.0258-7025.2021.1.zgjg202101023

    Xi Xiaoming, Wang Peng, Yang Baolai, et al. All-fiber laser oscillator reach 7kW output power[J]. Chinese Journal of Lasers, 2021, 48: 0116001 doi: 10.3321/j.issn.0258-7025.2021.1.zgjg202101023
    [56] Shiner B. The impact of fiber laser technology on the world wide material processing market[C]//Proceedings of CLEO: Applications and Technology 2013. 2013.
    [57] 林傲祥, 湛欢, 彭昆, 等. 国产复合功能光纤实现万瓦激光输出[J]. 强激光与粒子束, 2018, 30:060101 doi: 10.11884/HPLPB201830.180110

    Lin Aoxiang, Zhan Huan, Peng Kun, et al. 10 kW-level pump-gain integrated functional laser fiber[J]. High Power Laser and Particle Beams, 2018, 30: 060101 doi: 10.11884/HPLPB201830.180110
    [58] 陈晓龙, 楼风光, 何宇, 等. 高效率全国产化10 kW光纤激光器[J]. 光学学报, 2019, 39:0336001 doi: 10.3788/AOS201939.0336001

    Chen XIaolong, Lou Fengguang, He Yu, et al. Home-made 10 kW fiber laser with high efficiency[J]. Acta Optica Sinica, 2019, 39: 0336001 doi: 10.3788/AOS201939.0336001
    [59] Yang Baolai, Zhang Hanwei, Wang Xiaolin, et al. Mitigating transverse mode instability in a single-end pumped all-fiber laser oscillator with a scaling power of up to 2 kW[J]. Journal of Optics, 2016, 18: 105803. doi: 10.1088/2040-8978/18/10/105803
    [60] Fang Qiang, Li Jinhui, Shi Wei, et al. 5 kW near-diffraction-limited and 8 kW high-brightness monolithic continuous wave fiber lasers directly pumped by laser diodes[J]. IEEE Photonics Journal, 2017, 9: 1506107.
    [61] Shima K, Ikoma S, Uchiyama K, et al. 5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing[C]//Proceedings of SPIE 10512, Fiber Lasers XV: Technology and Systems. 2018: 105120C.
    [62] Yang Baolai, Wang Peng, Zhang Hanwei, et al. 6 kW single mode monolithic fiber laser enabled by effective mitigation of the transverse mode instability[J]. Optics Express, 2021, 29(17): 26366-26374. doi: 10.1364/OE.433630
    [63] Huang Zhimeng, Shu Qiang, Tao Rumao, et al. > 5kW record high power narrow linewidth laser from traditional step-index monolithic fiber amplifier[J]. IEEE Photonics Technology Letters, 2021, 33(21): 1181-1184. doi: 10.1109/LPT.2021.3112270
    [64] Wang Xiaozhuo, Crump P, Wenzel H, et al. Root-cause analysis of peak power saturation in pulse-pumped 1100 nm broad area single emitter diode lasers[J]. IEEE Journal of Quantum Electronics, 2010, 46(5): 658-665. doi: 10.1109/JQE.2010.2047381
    [65] Wenzel H, Crump P, Pietrzak A, et al. Theoretical and experimental investigations of the limits to the maximum output power of laser diodes[J]. New Journal of Physics, 2010, 12: 085007. doi: 10.1088/1367-2630/12/8/085007
    [66] Morita T, Nagakura T, Torii K, et al. High-efficient and reliable broad-area laser diodes with a window structure[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19: 1502104. doi: 10.1109/JSTQE.2013.2245103
    [67] Kaifuchi Y, Yamagata Y, Nogawa R, et al. Ultimate high power operation of 9xx-nm single emitter broad stripe laser diodes[C]//Proceedings of SPIE 10086, High-Power Diode Laser Technology XV. 2017: 100860D.
    [68] Gapontsev V, Moshegov N, Berezin I, et al. Highly-efficient high-power pumps for fiber lasers[C]//Proceedings of SPIE 10086, High-Power Diode Laser Technology XV. 2017: 1008604.
    [69] Ren Zhanqiang, Li Qingmin, Li Bo, et al. High wall-plug efficiency 808-nm laser diodes with a power up to 30.1 W[J]. Journal of Semiconductors, 2020, 41: 032901. doi: 10.1088/1674-4926/41/3/032901
    [70] Virtanen H, Uusitalo T, Karjalainen M, et al. Narrow-Linewidth 780-nm DFB lasers fabricated using nanoimprint lithography[J]. IEEE Photonics Technology Letters, 2018, 30(1): 51-54. doi: 10.1109/LPT.2017.2772337
    [71] Lewoczko-Adamczyk W, Pyrlik C, Häger J, et al. Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Perot cavity[J]. Optics Express, 2015, 23(8): 9705-9709. doi: 10.1364/OE.23.009705
    [72] Codemard C A, Vukovic N T, Chan J S, et al. Resonant SRS filtering fiber for high power fiber laser applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24: 0901509.
    [73] Liu T, Yang Z M, Xu S H, et al. Analytical investigation on transient thermal effects in pulse end-pumped short-length fiber laser[J]. Optics Express, 2009, 17(15): 12875-12890. doi: 10.1364/OE.17.012875
    [74] Dawson J W, Messerly M J, Heebner J E, et al. Power scaling analysis of fiber lasers and amplifiers based on non-silica materials[C]//Proceedings of SPIE 7686, Laser Technology for Defense and Security VI. 2010: 768611.
    [75] Augst S J, Fan T Y, Sanchez A. Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers[J]. Optics Letters, 2004, 29(5): 474-476. doi: 10.1364/OL.29.000474
    [76] Enloe L H, Rodda J L. Laser phase-locked loop[J]. Proceedings of the IEEE, 1965, 53(2): 165-166. doi: 10.1109/PROC.1965.3585
    [77] Glova A F, Drobyazko S V, Likhanskii V V. Multi-beam CO2 lasers and theirs applications[C]//Proceedings of the 2nd International Conference on Advanced Optoelectronics and Lasers. 2005: 43-46.
    [78] Abramski K M, Colley A D, Baker H J, et al. Phase-locked CO2 laser array using diagonal coupling of waveguide channels[J]. Applied Physics Letters, 1992, 60(5): 530-532. doi: 10.1063/1.106597
    [79] Hornby A M, Baker H J, Colley A D, et al. Phase locking of linear arrays of CO2 waveguide lasers by the waveguide-confined Talbot effect[J]. Applied Physics Letters, 1993, 63(19): 2591-2593. doi: 10.1063/1.110440
    [80] Bernard J M, Chodzko R A, Mirels H. Coupled multiline CW HF lasers—Experimental performance[J]. AIAA Journal, 1988, 26(11): 1369-1372. doi: 10.2514/3.10049
    [81] Redmond S M, Kansky J E, Creedon K J, et al. Active coherent combination of >200 semiconductor amplifiers using a SPGD algorithm[C]//Laser Science to Photonic Applications. 2011: 1-2.
    [82] Albrodt P, Niemeyer M, Crump P, et al. Coherent beam combining of high power quasi continuous wave tapered amplifiers[J]. Optics Express, 2019, 27(20): 27891-27901. doi: 10.1364/OE.27.027891
    [83] Bogatov A P, Drakin A E, Mikaelyan G T. Coherent combining of diode laser beams in a master oscillator – zigzag slab power amplifier system[J]. Quantum Electronics, 2019, 49(11): 1014-1018. doi: 10.1070/QEL17086
    [84] Schimmel G, Doyen I, Janicot S, et al. Passive coherent combining of two tapered laser diodes in an interferometric external cavity[C]//2015 IEEE High Power Diode Lasers and Systems Conference. 2015: 11-12.
    [85] Huang R K, Chann B, Burgess J, et al. Teradiode's high brightness semiconductor lasers[C]//Proceedings of SPIE 9730, Components & Packaging for Laser Systems II. 2016: 97300C.
    [86] Oka M, Masuda H, Kaneda Y, et al. Laser-diode-pumped phase-locked Nd: YAG laser arrays[J]. IEEE Journal of Quantum Electronics, 1992, 28(4): 1142-1147. doi: 10.1109/3.135239
    [87] Kono Y, Takeoka M, Uto K, et al. A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity[J]. IEEE Journal of Quantum Electronics, 2000, 36(5): 607-614. doi: 10.1109/3.842103
    [88] Marmo J, Injeyan H, Komine H, et al. Joint high power solid state laser program advancements at Northrop Grumman[C]//Proceedings of SPIE 7195, Fiber Lasers VI: Technology, Systems, and Applications. 2009: 719507.
    [89] Kienel M, Müller M, Demmler S, et al. Coherent beam combination of Yb: YAG single-crystal rod amplifiers[J]. Optics Letters, 2014, 39(11): 3278-3281. doi: 10.1364/OL.39.003278
    [90] Huang Zhimeng, Tang Xuan, Zhang Dayong, et al. Phase locking of slab laser amplifiers via square wave dithering algorithm[J]. Applied Optics, 2014, 53(10): 2163-2169. doi: 10.1364/AO.53.002163
    [91] Bourderionnet J, Bellanger C, Primot J, et al. Collective coherent phase combining of 64 fibers[J]. Optics Express, 2011, 19(18): 17053-17058. doi: 10.1364/OE.19.017053
    [92] 常洪祥, 常琦, 侯天悦, 等. 百束规模光纤激光相干合成[J]. 中国激光, 2020, 47:0916002.
    [93] Ma Yanxing, Wang Xiaolin, Zhou Pu, et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique[J]. Optics and Lasers in Engineering, 2011, 49(8): 1089-1092. doi: 10.1016/j.optlaseng.2011.03.001
    [94] Yu C X, Augst S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 2011, 36(14): 2686-2688. doi: 10.1364/OL.36.002686
    [95] Huang Zhimeng, Tang Xuan, Luo Yongquan, et al. Active phase locking of thirty fiber channels using multilevel phase dithering method[J]. Review of Scientific Instruments, 2016, 87: 033109. doi: 10.1063/1.4943666
    [96] Peng Yingnan, Hu Qiqi, Duan Jiazhu, et al. Active phase locking of laser coherent beam combination using square wave dithering algorithm[J]. Journal of Russian Laser Research, 2022, 43(5): 626-633. doi: 10.1007/s10946-022-10089-4
    [97] Peng Y, Hu Q, Duan J, et al. Numerical and experimental study on rapidly varying phase-distortion correction using modified square wave dithering algorithm[J]. Laser Physics
    [98] 彭英楠, 胡奇琪, 段佳著, 等. 基于光斑二阶矩的阵列光束倾斜相差自适应控制方法[J]. 强激光与粒子束, 2023, 35:041010 doi: 10.11884/HPLPB202335.220312

    Peng Yingnan, Hu Qiqi, Duan Jiazhu, et al. Self-adaptiue tilt control method based on second order moment of beam for laser array[J]. High Power Laser and Particle Beams, 2023, 35: 041010 doi: 10.11884/HPLPB202335.220312
    [99] 任国光, 伊炜伟, 齐予, 等. 美国战区和战略无人机载激光武器[J]. 激光与光电子学进展, 2017, 54:100002

    Ren Guoguang, Yi Weiwei, Qi Yu, et al. U. S. Theater and strategic UVA-borne laser weapon[J]. Laser & Optoelectronics Progress, 2017, 54: 100002
    [100] Li Feng, Geng Chao, Huang Guan, et al. Experimental demonstration of coherent combining with tip/tilt control based on adaptive space-to-fiber laser beam coupling[J]. IEEE Photonics Journal, 2017, 9: 7102812.
    [101] Hou Tianyue, An Yi, Chang Qi, et al. Deep learning-based phase control method for coherent beam combining and its application in generating orbital angular momentum beams[J]. arXiv: 2019, 1903: 03986.
    [102] Azarian A, Bourdon P, Lombard L, et al. Orthogonal coding methods for increasing the number of multiplexed channels in coherent beam combining[J]. Applied Optics, 2014, 53(8): 1493-1502. doi: 10.1364/AO.53.001493
    [103] McNaught S J, Thielen P A, Adams L N, et al. Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20: 0901008.
    [104] Shekel E, Vidne Y, Urbach B. 16kW single mode CW laser with dynamic beam for material processing[C]//Proceedings of SPIE 11260, Fiber Lasers XVII: Technology and Systems. 2020: 1126021.
    [105] 胡贞, 姜会林, 佟首峰, 等. 空间激光通信终端ATP技术与系统研究[J]. 兵工学报, 2011, 32(6):752-757

    Hu Zhen, Jiang Huilin, Tong Shoufeng, et al. Research on ATP system technology of laser communication terminal in space[J]. Acta Armamentarii, 2011, 32(6): 752-757
    [106] Haellstig E, Stigwall J, Lindgren M, et al. Laser beam steering and tracking using a liquid crystal spatial light modulator[C]//Proceedings of SPIE 5087, Laser Systems Technology. 2003.
    [107] Apter B, Efron U, Bahat-Treidel E. On the fringing-field effect in liquid-crystal beam-steering devices[J]. Applied Optics, 2004, 43(1): 11-19. doi: 10.1364/AO.43.000011
    [108] Abe H, Takeuchi M, Takeuchi G, et al. Two-dimensional beam-steering device using a doubly periodic Si photonic-crystal waveguide[J]. Optics Express, 2018, 26(8): 9389-9397. doi: 10.1364/OE.26.009389
    [109] Tuantranont A, Bright V M, Zhang J, et al. Optical beam steering using MEMS-controllable microlens array[J]. Sensors and Actuators A: Physical, 2001, 91(3): 363-372. doi: 10.1016/S0924-4247(01)00609-4
    [110] Mcmanamon P F, Dorschner T A, Corkum D L, et al. Optical phased array technology[J]. Proceedings of the IEEE, 1996, 84(2): 268-298. doi: 10.1109/5.482231
    [111] Resler D P, Hobbs D S, Sharp R C, et al. High-efficiency liquid-crystal optical phased-array beam steering[J]. Optics Letters, 1996, 21(9): 689-691. doi: 10.1364/OL.21.000689
    [112] 徐林. 液晶光学相控阵相位延迟及衍射效率研究[D]. 哈尔滨: 哈尔滨工业大学, 2008

    Xu Lin. Research on phase delay and diffraction efficiency of liquid crystal optical phased array[D]. Harbin: Harbin Institute of Technology, 2008
    [113] Khan S A, Riza N A. Demonstration of 3-dimensional wide-angle no-moving-parts laser beam steering[C]//Proceedings of SPIE 5550, Free-Space Laser Communications IV. 2004.
    [114] Riza N A, Arain M A. Code-multiplexed optical scanner[J]. Applied Optics, 2003, 42(8): 1493-1502. doi: 10.1364/AO.42.001493
    [115] Kim J, Oh C, Escuti M J, et al. Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings[C]//Proceedings of SPIE, 2008: 709302.
    [116] Whitaker B, Harris S R. A preliminary investigation into the effects of high-power illumination on optical phased arrays[R]. AFRL, 2010.
    [117] Gu D, Wen B, Mahajan M, et al. High power liquid crystal spatial light modulators[C]//Proceedings of SPIE 6306, Advanced Wavefront Control: Methods, Devices, and Applications IV. 2006: 630602.
    [118] 汪相如, 周庄奇. 液晶光学相控阵在高功率激光应用中的研究进展[J]. 红外与激光工程, 2018, 47:103006 doi: 10.3788/IRLA201847.0103006

    Wang Xiangru, Zhou Zhuangqi. Research progress of liquid crystal optical phased array in high power laser applications (invited)[J]. Infrared and Laser Engineering, 2018, 47: 103006 doi: 10.3788/IRLA201847.0103006
    [119] 李阳龙, 王伟平, 骆永全, 等. 1 064 nm激光对氧化铟锡薄膜的损伤研究[J]. 高压物理学报, 2012, 26(1):107-112 doi: 10.11858/gywlxb.2012.01.016

    Li Yanglong, Wang Weiping, Luo Yongquan, et al. 1 064 nm laser damage on indium tin oxide films[J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 107-112 doi: 10.11858/gywlxb.2012.01.016
    [120] 罗飞, 骆永全, 张大勇, 等. ITO薄膜电极激光损伤形貌的多重分形研究[J]. 应用激光, 2010, 30(2):86-90 doi: 10.3788/AL20103002.0086

    Luo Fei, Luo Yongquan, Zhang Dayong, et al. Analysis of multi-fractal patterns of ITO films radiated by laser[J]. Applied Laser, 2010, 30(2): 86-90 doi: 10.3788/AL20103002.0086
    [121] 骆永全, 张大勇, 张翠娟, 等. 液晶光学器件激光损伤研究[J]. 激光技术, 2010, 34(3):392-394

    Luo Yongquan, Zhang Dayong, Zhang Cuijuan, et al. Research of laser damage on liquid crystal optical elements[J]. Laser Technology, 2010, 34(3): 392-394
    [122] 骆永全, 王伟平, 罗飞. 连续激光辐照下二氧化钒薄膜热致相变实验研究[J]. 强激光与粒子束, 2006, 18(5):713-716

    Luo Yongquan, Wang Weiping, Luo Fei. Experimental study on heating-induced phase transition of vanadium dioxide thin films irradiated by CW laser[J]. High Power Laser and Particle Beams, 2006, 18(5): 713-716
    [123] Wang Haifeng, Huang Zhimeng, Zhang Dayong, et al. Thickness effect on laser-induced-damage threshold of indium-tin oxide films at 1064 nm[J]. Journal of Applied Physics, 2011, 110: 113111. doi: 10.1063/1.3665715
    [124] Zhao Xiangjie, Liu Cangli, Duan Jiazhu, et al. Morphology effect on the light scattering and dynamic response of polymer network liquid crystal phase modulator[J]. Optics Express, 2014, 22(12): 14757-14768. doi: 10.1364/OE.22.014757
    [125] Zhao Xiangjie, Liu Cangli, Zhang Dayong, et al. Direct investigation and accurate control of phase profile in liquid-crystal optical-phased array for beam steering[J]. Applied Optics, 2013, 52(29): 7109-7116. doi: 10.1364/AO.52.007109
    [126] Zhao Xiangjie, Zhang Dayong, Luo Yongquan, et al. Numerical analysis and design of patterned electrode liquid crystal microlens array with dielectric slab[J]. Optics & Laser Technology, 2012, 44(6): 1834-1839.
    [127] Zhao Xiangjie, Liu Cangli, Zhang Dayong, et al. Modeling and design of an optimized patterned electrode liquid crystal microlens array with dielectric slab[J]. Optik, 2013, 124(23): 6132-6139. doi: 10.1016/j.ijleo.2013.04.082
    [128] 陈一波, 沈浩, 段佳著, 等. 用于高功率密度光束控制的光寻址光阀研制[J]. 强激光与粒子束, 2023, 35:041012 doi: 10.11884/HPLPB202335.220203

    Chen Yibo, Shen Hao, Duan Jiazhu, et al. Development of optically addressed liquid crystal light valve for high power density beam control[J]. High Power Laser and Particle Beams, 2023, 35: 041012 doi: 10.11884/HPLPB202335.220203
    [129] Jalali B, Fathpour S. Silicon photonics[J]. Journal of Lightwave Technology, 2007, 24(12): 4600-4615.
    [130] Trinh P D, Yegnanarayanan S, Coppinger F, et al. Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity[J]. IEEE Photonics Technology Letters, 1997, 9(7): 940-942. doi: 10.1109/68.593358
    [131] Phare C T, Shin M C, Miller S A, et al. Silicon optical phased array with high-efficiency beam formation over 180 degree field of view[J]. arXiv: , 1802, 04624: 2018.
    [132] Yaacobi A, Sun Jie, Moresco M, et al. Integrated phased array for wide-angle beam steering[J]. Optics Letters, 2014, 39(15): 4575-4578. doi: 10.1364/OL.39.004575
    [133] Writers S. SWEEPER demonstrates wide-angle optical phased array technology[EB/OL]. (2015-05-25). https://www.spacedaily.com/reports/SWEEPER_Demonstrates_Wide_Angle_Optical_Phased_Array_Technology_999.html.
    [134] Chung S W, Abediasl H, Hashemi H. A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS[J]. IEEE Journal of Solid-State Circuits, 2018, 53(1): 275-296. doi: 10.1109/JSSC.2017.2757009
    [135] Ma Weichao, Tan Su, Wang Kuankuan, et al. Practical two-dimensional beam steering system using an integrated tunable laser and an optical phased array[J]. Applied Optics, 2020, 59(32): 9985-9994. doi: 10.1364/AO.403314
    [136] Yoo B W, Megens M, Sun Tianbo, et al. A 32 × 32 optical phased array using polysilicon sub-wavelength high-contrast-grating mirrors[J]. Optics Express, 2014, 22(16): 19029-19039. doi: 10.1364/OE.22.019029
    [137] Poulton C V, Byrd M J, Moss B, et al. 8192-element optical phased array with 100° steering range and flip-chip CMOS[C]//CLEO: Applications and Technology 2020. 2020: JTh4A. 3.
    [138] Zhang Xiaosheng, Kwon K, Henriksson J, et al. A large-scale microelectromechanical-systems-based silicon photonics LiDAR[J]. Nature, 2022, 603(7900): 253-258. doi: 10.1038/s41586-022-04415-8
    [139] 姜文汉. 自适应光学技术[J]. 自然杂志, 2006, 28(1):7-13 doi: 10.3969/j.issn.0253-9608.2006.01.002

    Jiang Wenhan. Adaptive optical technology[J]. Chinese Journal of Nature, 2006, 28(1): 7-13 doi: 10.3969/j.issn.0253-9608.2006.01.002
    [140] Israel D J. Laser communications relay demonstration: introduction for experimenters[R]. NASA, 2017.
    [141] 闻传花, 李玉权. 星地激光通信中的自适应光学研究[C]//2006北京地区高校研究生学术交流会——通信与信息技术会议论文集(上). 2006

    Wen Chuanhua, Li Yuquan. Research on adaptive optics in satellite-to-ground laser communication[C]//2006 Academic Meeting for Postgraduates in Beijing Area—Communication and Information Technology Conference Proceedings. 2006
    [142] Bridges W B, Brunner P T, Lazzara S P, et al. Coherent optical adaptive techniques[J]. Applied Optics, 1974, 13(2): 291-300. doi: 10.1364/AO.13.000291
    [143] Vorontsov M A, Kolosov V. Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing[J]. Journal of the Optical Society of America A, 2005, 22(1): 126-141. doi: 10.1364/JOSAA.22.000126
    [144] Weyrauch T, Vorontsov M A, Carhart G W, et al. Experimental demonstration of coherent beam combining over a 7 km propagation path[J]. Optics Letters, 2011, 36(22): 4455-4457. doi: 10.1364/OL.36.004455
    [145] Weyrauch T, Vorontsov M, Mangano J, et al. Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7 km[J]. Optics Letters, 2016, 41(4): 840-843. doi: 10.1364/OL.41.000840
    [146] Ma Yanxing, Zhou Pu, Tao Rumao, et al. Target-in-the-loop coherent beam combination of 100 W level fiber laser array based on an extended target with a scattering surface[J]. Optics Letters, 2013, 38(7): 1019-1021. doi: 10.1364/OL.38.001019
    [147] 支冬. 光纤激光目标在回路相干合成技术研究[D]. 长沙: 国防科学技术大学, 2018

    Zhi Dong. Study on the target-in-the-loop coherent beam combination technology of fiber lasers[D]. Changsha: National University of Defense Technology, 2018
    [148] 李枫, 邹凡, 姜佳丽, 等. 57孔径光纤激光相控阵自适应光学系统实现经2 km大气传输的目标在回路相干合成[J]. 中国激光, 2022, 49:0616002

    Li Feng, Zou Fan, Jiang Jiali, et al. Target-in-the-Loop in 2 km atmosphere based on 57-channel adaptive fiber laser optical phased array system[J]. Chinese Journal of Lasers, 2022, 49: 0616002
    [149] Meinel A B. Cost-scaling laws applicable to very large optical telescopes[J]. Optical Engineering, 1979, 18: 186645.
    [150] 王海涛, 周必方. 光学综合孔径干涉成像技术[J]. 光学 精密工程, 2002, 10(5):434-442

    Wang Haitao, Zhou Bifang. Optical synthesis aperture interference image technology[J]. Optics and Precision Engineering, 2002, 10(5): 434-442
    [151] Giesen P, Ouwerkerk B, van Brug H, et al. Mechanical setup for optical aperture synthesis for wide-field imaging[C]//Proceedings of SPIE 5528, Space Systems Engineering and Optical Alignment Mechanisms. 2004: 361-371.
    [152] 明名, 王建立, 张景旭, 等. 大口径望远镜光学系统的误差分配与分析[J]. 光学 精密工程, 2009, 17(1):104-108

    Ming Wang, Wang Jianli, Zhang Jingxu, et al. Error budget and analysis for optical system in large telescope[J]. Optics and Precision Engineering, 2009, 17(1): 104-108
    [153] Carrara W G, Goodman R S, Majewski R M, Spotlight synthetic aperture radar: signal processing algorithms [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 1997, 59(5): 597-599.
    [154] Hege E K, Beckers J M, Strittmatter P A, et al. Multiple mirror telescope as a phased array telescope[J]. Applied Optics, 1985, 24(16): 2565-2576. doi: 10.1364/AO.24.002565
    [155] Beckers J M. VLT interferometer: III. Factors affecting wide field-of-view operation[C]//Proceedings of SPIE 1236, Advanced Technology Optical Telescopes IV. 1990.
    [156] Hill J M, Ashby D S, Brynnel J G, et al. The Large Binocular Telescope: binocular all the time[C]//Proceedings of SPIE 9145, Ground-based and Airborne Telescopes V. 2014: 914502.
    [157] Ricklin J, Schumm B, Dierking M, et al. Synthetic aperture ladar for tactical imaging (SALTI) (Briefing Charts)[R]. DARPA, 2007.
    [158] Krause B W, Buck J, Ryan C, et al. Synthetic aperture ladar flight demonstration[C]//CLEO: Applications and Technology 2011. 2011: PDPB7.
    [159] Tian He, Liu Zheng, Zeng Zheng, et al. An airborne inverse synthetic aperture ladar imaging method based on sparse sampling[J]. Procedia Computer Science, 2020, 174: 694-699. doi: 10.1016/j.procs.2020.06.144
    [160] Lu Tianan, Huang Fei, Li Hongping. Neural network based synthetic aperture ladar imaging through marine atmosphere[J]. Optik, 2020, 219: 164975. doi: 10.1016/j.ijleo.2020.164975
  • 加载中
图(19) / 表(6)
计量
  • 文章访问数:  2081
  • HTML全文浏览量:  617
  • PDF下载量:  509
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-13
  • 修回日期:  2022-11-25
  • 录用日期:  2023-01-02
  • 网络出版日期:  2023-02-22
  • 刊出日期:  2023-03-30

目录

    /

    返回文章
    返回