留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ARCON方法的先进小堆燃料操作事故放射性后果分析

王韶伟 王一川 巩建业 陈海英 李帷 刘巧凤

王韶伟, 王一川, 巩建业, 等. 基于ARCON方法的先进小堆燃料操作事故放射性后果分析[J]. 强激光与粒子束, 2023, 35: 076002. doi: 10.11884/HPLPB202335.220315
引用本文: 王韶伟, 王一川, 巩建业, 等. 基于ARCON方法的先进小堆燃料操作事故放射性后果分析[J]. 强激光与粒子束, 2023, 35: 076002. doi: 10.11884/HPLPB202335.220315
Wang Shaowei, Wang Yichuan, Gong Jianye, et al. Analysis on radiological consequence in fuel handling accident for advanced small reactor based on ARCON methodology[J]. High Power Laser and Particle Beams, 2023, 35: 076002. doi: 10.11884/HPLPB202335.220315
Citation: Wang Shaowei, Wang Yichuan, Gong Jianye, et al. Analysis on radiological consequence in fuel handling accident for advanced small reactor based on ARCON methodology[J]. High Power Laser and Particle Beams, 2023, 35: 076002. doi: 10.11884/HPLPB202335.220315

基于ARCON方法的先进小堆燃料操作事故放射性后果分析

doi: 10.11884/HPLPB202335.220315
详细信息
    作者简介:

    王韶伟,sinodapy@126.com

    通讯作者:

    陈海英, chy1025@126.com

  • 中图分类号: TL732

Analysis on radiological consequence in fuel handling accident for advanced small reactor based on ARCON methodology

  • 摘要: 根据小型供热堆的设计特点,建立了燃料操作事故源项计算模型,研究事故后放射性核素的释放,并基于国外小型堆事故放射性后果分析经验和RG4.28提供的ARCON方法,开展了燃料操作事故后大气弥散因子和场址边界处个人所受剂量的分析。结果表明:燃料操作事故后2 h,燃料包壳间隙的放射性核素释放到环境中,释放到环境的放射性活度达到1014 Bq水平,其中惰性气体的释放量高于碘,133Xe释放量最大;事故后30 d燃料操作事故所致的场址边界处个人有效剂量和甲状腺剂量可满足剂量限值要求,剂量最大值位于东北东方位。
  • 图  1  事故放射性后果分析流程

    Figure  1.  Flowchart of accident radiological consequence analysis

    图  2  燃料操作事故释放到环境中的碘放射性活度

    Figure  2.  Radioactivity of iodine released to the environment in fuel handling accident

    图  3  燃料操作事故释放到环境中的惰性气体放射性活度

    Figure  3.  Radioactivity of inert gas released to the environment in fuel handling accident

    图  4  事故后各方位及全场址大气弥散因子

    Figure  4.  Atmospheric dispersion factors for all directions and the overall site after the accident

    图  5  燃料操作事故所致场址边界处有效剂量

    Figure  5.  Total effective doses at site boundary in fuel handling accident

    图  6  燃料操作事故所致场址边界处甲状腺剂量

    Figure  6.  Thyroid doses at site boundary in fuel handling accident

  • [1] 周涛, 张海龙, 刘文斌. 小型反应堆在综合能源系统中作用的研究[J]. 华电技术, 2021, 43(4):39-46

    Zhou Tao, Zhang Hailong, Liu Wenbin. Research on the role of small reactors in integrated energy systems[J]. Huadian Technology, 2021, 43(4): 39-46
    [2] 常德健, 漆小玲, 王静, 等. 模块化小型堆用于集中供热的减排潜力分析[J]. 新能源进展, 2021, 9(1):76-84

    Chang Dejian, Qi Xiaoling, Wang Jing, et al. Analysis of emission reduction potential of small modular reactor for central heating[J]. Advances in New and Renewable Energy, 2021, 9(1): 76-84
    [3] 陈文军, 姜胜耀. 中国发展小型堆核能系统的可行性研究[J]. 核动力工程, 2013, 34(2):153-156 doi: 10.3969/j.issn.0258-0926.2013.02.036

    Chen Wenjun, Jiang Shengyao. Feasibility study on development of small nuclear power reactors in China[J]. Nuclear Power Engineering, 2013, 34(2): 153-156 doi: 10.3969/j.issn.0258-0926.2013.02.036
    [4] 周蓝宇, 齐实, 周涛. 小型模块化反应堆发展趋势及前景[J]. 科技创新与应用, 2017(21):195-196

    Zhou Lanyu, Qi Shi, Zhou Tao. Development trend and prospect of small modular reactor[J]. Technology Innovation and Application, 2017(21): 195-196
    [5] 曲静原, 张琳, 黄挺. 小型堆研发及核应急准备进展[J]. 科技导报, 2013, 31(35):71-75

    Qu Jingyuan, Zhang Lin, Huang Ting. Emergency preparedness for small modular reactors[J]. Science & Technology Review, 2013, 31(35): 71-75
    [6] 丁锡嘉, 周涛, 张家磊, 等. 小型模块化核反应堆技术安全性研究[J]. 科技创新与应用, 2019(34):19-21

    Ding Xijia, Zhou Tao, Zhang Jialei, et al. Study on technical safety of small modular nuclear reactor[J]. Technology Innovation and Application, 2019(34): 19-21
    [7] 国家发展和改革委员会. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[R]. 北京: 国家发展和改革委员会. 2021: 29-31

    National Development and Reform Commission. The 14th five-year plan for national economic and social development of the People's Republic of China and outline of the vision for 2035[R]. Beijing: National Development and Reform Commission, 2021: 29-31
    [8] GB 6249-2011核动力厂环境辐射防护规定[S]

    GB 6249-2011 Regulations for environmental radiation protection of nuclear power plant[S]
    [9] NRC. PHASE 6-NuScale DC final safety evaluation report (complete with appendices)[R/OL]. (2020-08-28)[2021-01-25]. https://www.nrc.gov/docs/ML2002/ML20023A318.html.
    [10] NRC. Use of ARCON methodology for calculation of accident-related offsite atmospheric dispersion factors, regulatory guide 4.28[R]. Washington: NRC, 2021.
    [11] Ramsdell J V Jr, Simonen C A. Atmospheric relative concentrations in building wakes[R]. NUREG/CR-6331, 1997.
    [12] NRC. Atmospheric relative concentrations for control room radiological habitability assessments at nuclear power plants, regulatory guide 1.194[R]. Washington: NRC, 2003.
    [13] NRC. Alternative radiological source terms for evaluating design basis accidents at nuclear power reactors, regulatory guide 1.183[R]. Washington: NRC, 2000.
    [14] GB 18871-2002电离辐射防护与辐射源安全基本标准[S]

    GB 18871-2002 Basic standards for protection against ionizing radiation and for the safety of radiation sources[S]
    [15] ICRP. Age-dependent doses to members of the public from intake of radionuclides: part 4 Inhalation dose coefficients[R]. Netherlands: ICRP, 1996.
    [16] 国家核安全局. 小型压水堆核动力厂安全审评原则(试行)[R]. 北京: 国家核安全局, 2016

    National Nuclear Safety Administration. Principles for safety review of small pressurized water reactor nuclear power plants (trial)[R]. Beijing: National Nuclear Safety Administration, 2016
  • 加载中
图(6)
计量
  • 文章访问数:  329
  • HTML全文浏览量:  141
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-29
  • 修回日期:  2023-03-06
  • 录用日期:  2023-03-06
  • 网络出版日期:  2023-04-01
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回