留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光纤合束器件的高功率全光纤相干合成技术研究进展与展望

闫玥芳 陶汝茂 刘玙 李雨薇 张昊宇 楚秋慧 李敏 舒强 冯曦 黄文会 景峰

闫玥芳, 陶汝茂, 刘玙, 等. 基于光纤合束器件的高功率全光纤相干合成技术研究进展与展望[J]. 强激光与粒子束, 2023, 35: 041005. doi: 10.11884/HPLPB202335.220316
引用本文: 闫玥芳, 陶汝茂, 刘玙, 等. 基于光纤合束器件的高功率全光纤相干合成技术研究进展与展望[J]. 强激光与粒子束, 2023, 35: 041005. doi: 10.11884/HPLPB202335.220316
Yan Yuefang, Tao Rumao, Liu Yu, et al. Research progress and prospect of high power all-fiber coherent beam combination based on fiber combining devices[J]. High Power Laser and Particle Beams, 2023, 35: 041005. doi: 10.11884/HPLPB202335.220316
Citation: Yan Yuefang, Tao Rumao, Liu Yu, et al. Research progress and prospect of high power all-fiber coherent beam combination based on fiber combining devices[J]. High Power Laser and Particle Beams, 2023, 35: 041005. doi: 10.11884/HPLPB202335.220316

基于光纤合束器件的高功率全光纤相干合成技术研究进展与展望

doi: 10.11884/HPLPB202335.220316
详细信息
    作者简介:

    闫玥芳,joyyyf@163.com

    通讯作者:

    陶汝茂,supertaozhi@163.com

  • 中图分类号: O436

Research progress and prospect of high power all-fiber coherent beam combination based on fiber combining devices

  • 摘要: 介绍了目前研究中相干合成多采用空间结构的研究现状,分析了空间结构的相干合成方案需要复杂的光路调节且长时间工作稳定性欠缺,肯定了基于光纤合束器件的全光纤激光相干合成在相干合成光源中的稳定性与实用性,梳理了近年来基于光纤合束器件的全光纤激光相干合成方案,分别介绍了基于光纤耦合器、光子灯笼、相干信号合束器以及基于自成像效应实现全光纤合束的技术方案及研究现状,分析了不同光纤器件目前的主要限制因素和发展瓶颈,并展望了未来的发展方向。
  • 图  1  全纤化相干合成系统示意图

    Figure  1.  Schematic diagram of the all-fiber coherent beam combination system

    图  2  基于光纤耦合器的相干合成示意图

    Figure  2.  Diagram of CBC based on optical fiber coupler

    图  3  基于光纤偏振合束器的两路相干合成实验结构示意图

    Figure  3.  Schematic diagram of two-channel CBC based on fiber polarization beam combiner

    图  4  光子灯笼结构及传统灯笼结构示意图

    Figure  4.  Diagram of the structure of photonic lantern and traditional lantern

    图  5  光子灯笼相干合束原理图

    Figure  5.  Coherent beam combination principal of photonic lantern

    图  6  3×1 光子灯笼相干合成实验结构示意图

    Figure  6.  Schematic diagram of 3×1 photonic lantern coherent combining

    图  7  千瓦级光子灯笼实验结构示意图及结果

    Figure  7.  Diagram of the structure and the results of kW photonic lantern system

    图  8  61路光子灯笼结构和截面示意图

    Figure  8.  Structure and section diagram of 61-core photonic lantern

    图  9  3×1光子灯笼实验结构示意图及结果

    Figure  9.  Experimental structure diagram and results of 3×1 photonic lantern

    图  10  基于拉锥技术的相干信号合束器结构示意图

    Figure  10.  Schematic diagram of the structure of the coherent signal beam combiner based on taper technology

    图  11  相干信号合束器实验原理示意图及实验前后光斑图

    Figure  11.  Diagram of the experiment of coherent signal beam combiner and light spots before and after experiment

    图  12  16 kW相干合成激光实验系统及结果示意图

    Figure  12.  Diagram of the 16 kW coherent beam combination system and the results

    图  13  两路Y形相干合束实验结构示意图

    Figure  13.  Schematic diagram of the experimental structure of the two-channel Y-shaped coherent beam combination

    图  14  4路合束器合束结构示意图

    Figure  14.  Schematic diagram of the beam combining structure of the 4-way beam combiner

    图  15  基于自成像效应的空间结构相干合成模块

    Figure  15.  Photograph of the free-space beam combiner module based on self-imaging effect

    图  16  矩形纤芯光纤截面图

    Figure  16.  Cross section of a rectangular core fiber

    图  17  2×2非相干信号合束器结构示意图和实验结果

    Figure  17.  Diagram of structure and results of 2×2 incoherent signal combiner

    图  18  方形光纤合束器示意图

    Figure  18.  Schematic diagram of square fiber combiner

    图  19  不同光纤阵列下,合束效果随方形光纤数值孔径变化示意图

    Figure  19.  Diagram of the function of the combining effects of NA with different fiber arrays

    图  20  方形光纤自成像效应理论和实验验证结果

    Figure  20.  Theoretical and experimental verification results of square fiber self-imaging effect

    图  21  基于方形光纤的光纤合束器结构示意图、输入光斑和合成结果

    Figure  21.  Diagram of the beam combiner based on the square fiber, the input spots and combining result

    图  22  方形光纤截面图

    Figure  22.  Cross section of a square core fiber

  • [1] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20: 0904123.
    [2] Naeem M. Advances in drilling with fiber lasers[C]//Proceedings of SPIE 9657, Industrial Laser Applications Symposium (ILAS 2015). 2015: 965705.
    [3] Clery D. Laser fusion, with a difference[J]. Science, 2015, 347(6218): 111-112. doi: 10.1126/science.347.6218.111
    [4] Shi Wei, Schulzgen A, Amezcua R, et al. Fiber lasers and their applications: introduction[J]. Journal of the Optical Society of America B, 2017, 34(3): FLA1. doi: 10.1364/JOSAB.34.00FLA1
    [5] 杨昌盛, 徐善辉, 周军, 等. 大功率光纤激光材料与器件关键技术研究进展[J]. 中国科学:技术科学, 2017, 47(10):1038-1048 doi: 10.1360/N092016-00437

    Yang Changsheng, Xu Shanhui, Zhou Jun, et al. Research advance on the key technology of high-power fiber laser materials and components[J]. CIENTIA SINICA Technologica, 2017, 47(10): 1038-1048 doi: 10.1360/N092016-00437
    [6] 周朴, 黄良金, 冷进勇, 等. 高功率双包层光纤激光器: 30周年的发展历程[J]. 中国科学:技术科学, 2020, 50(2):123-135 doi: 10.1360/N092018-00409

    Zhou Pu, Huang Liangjin, Leng Jinyong, et al. High-power double-cladding fiber lasers: a 30-year overview[J]. SCIENTIA SINICA Technologica, 2020, 50(2): 123-135 doi: 10.1360/N092018-00409
    [7] 党文佳, 李哲, 李玉婷, 等. 高功率连续波掺镱光纤激光器研究进展[J]. 中国光学, 2020, 13(4):676-694 doi: 10.37188/CO.2019-0208

    Dang Wenjia, Li Zhe, Li Yuting, et al. Recent advances in high-power continuous-wave ytterbium-doped fiber lasers[J]. Chinese Optics, 2020, 13(4): 676-694 doi: 10.37188/CO.2019-0208
    [8] 肖起榕, 田佳丁, 李丹, 等. 级联泵浦高功率掺镱光纤激光器: 进展与展望[J]. 中国激光, 2021, 48:1501004 doi: 10.3788/CJL202148.1501004

    Xiao Qirong, Tian Jiading, Li Dan, et al. Tandem-pumped high-power ytterbium-doped fiber lasers: progress and opportunities[J]. Chinese Journal of Lasers, 2021, 48: 1501004 doi: 10.3788/CJL202148.1501004
    [9] Shiner B. The impact of fiber laser technology on the world wide material processing market[C]//Proceedings of the CLEO: Science and Innovations 2013. 2013: AF2J. 1.
    [10] Lin Honghuan, Xu Lixin, Li Chengyu, et al. 10.6 kW high-brightness cascade-end-pumped monolithic fiber lasers directly pumped by laser diodes in step-index large mode area double cladding fiber[J]. Results in Physics, 2019, 14: 102479. doi: 10.1016/j.rinp.2019.102479
    [11] Liu Zejin, Jin Xiaoxi, Su Rongtao, et al. Development status of high power fiber lasers and their coherent beam combination[J]. Science China Information Sciences, 2019, 62: 41301. doi: 10.1007/s11432-018-9742-0
    [12] 陈晓龙, 楼风光, 何宇, 等. 高效率全国产化10 kW光纤激光器[J]. 光学学报, 2019, 39:0336001 doi: 10.3788/AOS201939.0336001

    Chen Xiaolong, Lou Fengguang, He Yu, et al. Home-made 10kW fiber laser with high efficiency[J]. Acta Optica Sinica, 2019, 39: 0336001 doi: 10.3788/AOS201939.0336001
    [13] 林傲祥, 肖起榕, 倪力, 等. 国产YDF有源光纤实现单纤20 kW激光输出[J]. 中国激光, 2021, 48:0916003

    Lin Aoxiang, Xiao Qirong, Ni Li, et al. Home-made YDF active fiber realizes single fiber 20 kW laser output[J]. Chinese Journal of Lasers, 2021, 48: 0916003
    [14] 肖虎, 潘志勇, 陈子伦, 等. 基于自研光纤和器件实现20kW高光束质量激光稳定输出[J]. 中国激光, 2022, 49:1616002

    Xiao Hu, Pan Zhiyong, Chen Zilun, et al. Based on self-developed optical fibers and devices to achieve stable output of 20kW high beam quality laser[J]. Chinese Journal of Lasers, 2022, 49: 1616002
    [15] 王鹏, 奚小明, 张汉伟, 等. LD泵浦光纤激光放大器实现13 kW高光束质量输出[J]. 强激光与粒子束, 2022, 35:121001

    Wang Peng, Xi Xiaoming, Zhang Hanwei, et al. Laser-diode-pumped fiber laser amplifier for 13 kW high-beam-quality output[J]. High Power Laser and Particle Beams, 2022, 35: 121001
    [16] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266. doi: 10.1364/OE.16.013240
    [17] Zhu Jiajian, Zhou Pu, Ma Yanxing, et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers[J]. Optics Express, 2011, 19(19): 18645-18654. doi: 10.1364/OE.19.018645
    [18] Tao Rumao, Wang Xiaolin, Zhou Pu. Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24: 0903319.
    [19] Zervas M N. Transverse mode instability, thermal lensing and power scaling in Yb3+-doped high-power fiber amplifiers[J]. Optics Express, 2019, 27(13): 19019-19041. doi: 10.1364/OE.27.019019
    [20] 王建军, 刘玙, 李敏, 等. 光纤激光模式不稳定研究十年回顾与展望[J]. 强激光与粒子束, 2020, 32:121003

    Wang Jianjun, Liu Yu, Li Min, et al. Ten-year review and prospect on mode instability research of fiber lasers[J]. High Power Laser and Particle Beams, 2020, 32: 121003
    [21] 林傲祥, 彭昆, 俞娟, 等. 高功率连续光纤激光系统热效应及其抑制措施[J]. 强激光与粒子束, 2022, 34:011005

    Lin Aoxiang, Peng Kun, Yu Juan, et al. Thermal effect and its suppression in high-power continuous-wave fiber laser system[J]. High Power Laser and Particle Beams, 2022, 34: 011005
    [22] 张春, 谢亮华, 楚秋慧, 等. 高功率光纤激光受激拉曼散射效应研究新进展[J]. 强激光与粒子束, 2022, 34:021002

    Zhang Chun, Xie Lianghua, Chu Qiuhui, et al. Research progress of stimulated Raman scattering effect in high power fiber lasers[J]. High Power Laser and Particle Beams, 2022, 34: 021002
    [23] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867. doi: 10.1038/nphoton.2013.273
    [24] 周朴, 冷进勇, 肖虎, 等. 高平均功率光纤激光的研究进展与发展趋势[J]. 中国激光, 2021, 48:2000001 doi: 10.3788/CJL202148.2000001

    Zhou Pu, Leng Jinyong, Xiao Hu, et al. High average power fiber lasers: research progress and future prospect[J]. Chinese Journal of Lasers, 2021, 48: 2000001 doi: 10.3788/CJL202148.2000001
    [25] 楼祺洪, 何兵, 周军. 光纤激光器及其相干组束[J]. 红外与激光工程, 2007, 36(2):155-159 doi: 10.3969/j.issn.1007-2276.2007.02.003

    Lou Qihong, He Bing, Zhou Jun. Fiber lasers and it's coherent beam combination[J]. Infrared and Laser Engineering, 2007, 36(2): 155-159 doi: 10.3969/j.issn.1007-2276.2007.02.003
    [26] Flores A, Dajani I, Holten R, et al. Multi-kilowatt diffractive coherent combining of pseudorandom-modulated fiber amplifiers[J]. Optical Engineering, 2016, 55: 096101. doi: 10.1117/1.OE.55.9.096101
    [27] Liu Zejin, Ma Pengfei, Su Rongtao, et al. High-power coherent beam polarization combination of fiber lasers: progress and prospect [Invited][J]. Journal of the Optical Society of America B, 2017, 34(3): A7-A14. doi: 10.1364/JOSAB.34.0000A7
    [28] 王小林, 周朴, 粟荣涛, 等. 高功率光纤激光相干合成的现状、趋势与挑战[J]. 中国激光, 2017, 44:0201001 doi: 10.3788/CJL201744.0201001

    Wang Xiaolin, Zhou Pu, Su Rongtao, et al. Current situation, tendency and challenge of coherent combining of high power fiber lasers[J]. Chinese Journal of Lasers, 2017, 44: 0201001 doi: 10.3788/CJL201744.0201001
    [29] Klenke A, Müller M, Stark H, et al. Coherent beam combination of ultrafast fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24: 0902709.
    [30] Ma Pengfei, Chang Hongxiang, Ma Yanxing, et al. 7.1 kW coherent beam combining system based on a seven-channel fiber amplifier array[J]. Optics & Laser Technology, 2021, 140: 107016.
    [31] 吴坚, 马阎星, 马鹏飞, 等. 光纤激光相干合成20 kW级高功率输出[J]. 红外与激光工程, 2021, 50:20210621 doi: 10.3788/IRLA20210621

    Wu Jian, Ma Yanxing, Ma Pengfei, et al. Fiber laser coherent beam combination of 20 kW class high power output[J]. Infrared and Laser Engineering, 2021, 50: 20210621 doi: 10.3788/IRLA20210621
    [32] 周朴, 粟荣涛, 马阎星, 等. 激光相干合成的研究进展: 2011—2020[J]. 中国激光, 2021, 48:0401003 doi: 10.3788/CJL202148.0401003

    Zhou Pu, Su Rongtao, Ma Yanxing, et al. Review of coherent laser beam combining research progress in the past decade[J]. Chinese Journal of Lasers, 2021, 48: 0401003 doi: 10.3788/CJL202148.0401003
    [33] Ma Yanxing, Wang Xiaolin, Leng Jinyong, et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique[J]. Optics Letters, 2011, 36(6): 951-953. doi: 10.1364/OL.36.000951
    [34] Müller M, Aleshire C, Klenke A, et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2020, 45(11): 3083-3086. doi: 10.1364/OL.392843
    [35] Goodno G D, Weiss S B. Automated co-alignment of coherent fiber laser arrays via active phase-locking[J]. Optics Express, 2012, 20(14): 14945-14953. doi: 10.1364/OE.20.014945
    [36] Zhi Dong, Ma Pengfei, Ma Yanxing, et al. Novel adaptive fiber-optics collimator for coherent beam combination[J]. Optics Express, 2014, 22(25): 31520-31528. doi: 10.1364/OE.22.031520
    [37] Mueller M, Klenke A, Steinkopff A, et al. 3.5 kW coherently combined ultrafast fiber laser[C]//Proceedings of SPIE 10897, Fiber Lasers XVI: Technology and Systems. 2019: 1089719.
    [38] Ma Yanxing, Luo Gen, He Shuyue, et al. Cantilevered adaptive fiber-optics collimator based on piezoelectric bimorph actuators[J]. Applied Optics, 2022, 61(11): 3195-3200. doi: 10.1364/AO.454250
    [39] 陈子伦, 周旋风, 王泽锋, 等. 高功率光纤激光器功率合束器的研究进展(特邀)[J]. 红外与激光工程, 2018, 47:0103005 doi: 10.3788/IRLA201847.0103005

    Chen Zilun, Zhou Xuanfeng, Wang Zefeng, et al. Review of all-fiber signal combiner for high power fiber lasers [Invited][J]. Infrared and Laser Engineering, 2018, 47: 0103005 doi: 10.3788/IRLA201847.0103005
    [40] Rockwell D A, Shkunov V V, Marciante J R. Semi-guiding high-aspect-ratio core (SHARC) fiber providing single-mode operation and an ultra-large core area in a compact coilable package[J]. Optics Express, 2011, 19(15): 14746-14762. doi: 10.1364/OE.19.014746
    [41] Sun Jiapo, Liu Lie, Han Lianghua, et al. 100 kW ultra high power fiber laser[J]. Optics Continuum, 2022, 1(9): 1932-1938. doi: 10.1364/OPTCON.465836
    [42] Shcherbakov E A, Fomin V V, Abramov A A, et al. Industrial grade 100 kW power CW fiber laser[C]//Proceedings of the Advanced Solid State Lasers. 2013: ATh4A. 2.
    [43] Kozlov V A, Hernández-Cordero J, Morse T F. All-fiber coherent beam combining of fiber lasers[J]. Optics Letters, 1999, 24(24): 1814-1816. doi: 10.1364/OL.24.001814
    [44] Wang Baishi, Mies E, Minden M, et al. All-fiber 50 W coherently combined passive laser array[J]. Optics Letters, 2009, 34(7): 863-865. doi: 10.1364/OL.34.000863
    [45] Fotiadi A A, Antipov O L, Mégret P. Resonantly induced refractive index changes in Yb-doped fibers: the origin, properties and application for all-fiber coherent beam combining[M]//Pal B. Frontiers in Guided Wave Optics and Optoelectronics. Vukovar: InTech, 2010: 209-234.
    [46] Wang Baishi, Sanchez A. All-fiber passive coherent beam combining of fiber lasers and challenges[C]//Proceedings of the Fiber Laser Applications 2012. 2012: FTh3A. 2.
    [47] 杨保来, 王小林, 周朴, 等. 全光纤结构的光纤环被动锁相相干合成研究[J]. 中国激光, 2014, 41:1005001 doi: 10.3788/CJL201441.1005001

    Yang Baolai, Wang Xiaolin, Zhou Pu, et al. Research of all-fiber laser coherent combining system based on fiber-loop[J]. Chinese Journal of Lasers, 2014, 41: 1005001 doi: 10.3788/CJL201441.1005001
    [48] Kambayashi Y, Yoshida M, Sasaki T, et al. All-fiber phase-control-free coherent-beam combining toward femtosecond-pulse amplification[J]. Optics Communications, 2017, 382: 556-558. doi: 10.1016/j.optcom.2016.08.029
    [49] Takahashi Y, Yamazaki T, Yoshida M. Development of all-fiber coherent beam combining optical system toward higher output of the fiber laser[J]. Journal of Laser Applications, 2020, 32: 022077. doi: 10.2351/7.0000058
    [50] Lhermite J, Desfarges-Berthelemot A, Kermene V, et al. Passive phase locking of an array of four fiber amplifiers by an all-optical feedback loop[J]. Optics Letters, 2007, 32(13): 1842-1844. doi: 10.1364/OL.32.001842
    [51] Shakir S A, Culver B, Nelson B, et al. Power scaling of passively phased fiber amplifier arrays[C]//Proceedings of SPIE 7070, Optical Technologies for Arming, Safing, Fuzing, and Firing IV. 2008: 70700N.
    [52] Li Zhen, Zhou Jun, He Bing, et al. Impact of phase perturbation on passive phase-locking coherent beam combination[J]. IEEE Photonics Technology Letters, 2012, 24(8): 655-657. doi: 10.1109/LPT.2012.2185785
    [53] Xue Yuhao, He Bing, Zhou Jun, et al. Array size scaling of passive coherent beam combination in fiber laser array[J]. Chinese Optics Letters, 2012, 10: 011401. doi: 10.3788/COL201210.011401
    [54] Sabourdy D, Kermène V, Desfarges-Berthelemot A, et al. Power scaling of fibre lasers with all-fibre interferometric cavity[J]. Electronics Letters, 2002, 38(14): 692-693. doi: 10.1049/el:20020505
    [55] Shirakawa A, Saitou T, Sekiguchi T, et al. Coherent addition of fiber lasers by use of a fiber coupler[J]. Optics Express, 2002, 10(21): 1167-1172. doi: 10.1364/OE.10.001167
    [56] Sabourdy D, Kermène V, Desfarges-Berthelemot A, et al. Efficient coherent combining of widely tunable fiber lasers[J]. Optics Express, 2003, 11(2): 87-97. doi: 10.1364/OE.11.000087
    [57] Wang Baishi, Sanchez A D. All-fiber passive coherent combining of high power lasers[J]. Optical Engineering, 2011, 50: 111606. doi: 10.1117/1.3613945
    [58] Wu T W, Chang W Z, Galvanauskas A, et al. Model for passive coherent beam combining in fiber laser arrays[J]. Optics Express, 2009, 17(22): 19509-19518. doi: 10.1364/OE.17.019509
    [59] Kouznetsov D, Bisson J F, Shirakawa A, et al. Limits of coherent addition of lasers: simple estimate[C]//2005 Pacific Rim Conference on Lasers and Electro-Optics. 2005: 1061-1063.
    [60] Glova A F, Lysikov A Y, Musena E I. Phase locking of 2D laser arrays by the spatial filter method[J]. Quantum Electronics, 2002, 32(3): 277-278. doi: 10.1070/QE2002v032n03ABEH002179
    [61] Glova A F. Phase locking of optically coupled lasers[J]. Quantum Electronics, 2003, 33(4): 283-306. doi: 10.1070/QE2003v033n04ABEH002415
    [62] Goodno G D, Mcnaught S J, Rothenberg J E, et al. Active phase and polarization locking of a 1.4 kW fiber amplifier[J]. Optics Letters, 2010, 35(10): 1542-1544. doi: 10.1364/OL.35.001542
    [63] Goodno G D, Mcnaught S J, Weber M E, et al. Multichannel polarization stabilization for coherently combined fiber laser arrays[J]. Optics Letters, 2012, 37(20): 4272-4274. doi: 10.1364/OL.37.004272
    [64] 来文昌, 马鹏飞, 肖虎, 等. 高功率窄线宽光纤激光技术[J]. 强激光与粒子束, 2020, 32:121001

    Lai Wenchang, Ma Pengfei, Xiao Hu, et al. High-power narrow-linewidth fiber laser technology[J]. High Power Laser and Particle Beams, 2020, 32: 121001
    [65] 楚秋慧, 郭超, 颜冬林, 等. 高功率窄线宽光纤激光器的研究进展[J]. 强激光与粒子束, 2020, 32:121004

    Chu Qiuhui, Guo Chao, Yan Donglin, et al. Recent progress of high power narrow linewidth fiber laser[J]. High Power Laser and Particle Beams, 2020, 32: 121004
    [66] 廖延彪. 光纤光学: 原理与应用[M]. 北京: 清华大学出版社, 2010

    Liao Yanbiao. Fiber optics: principles and applications[M]. Beijing: Tsinghua University Press, 2010
    [67] 迟泽英. 光纤光学与光纤应用技术[M]. 北京: 电子工业出版社, 2014

    Chi Zeying. Fiber optics, theories and applications[M]. Beijing: Publishing House of Electronics Industry, 2014
    [68] Rothenberg J E, Goodno G D. Advances and limitations in beam combination of kilowatt fiber amplifiers[C]//Proceedings of SPIE 7686, Laser Technology for Defense and Security VI. 2010: 768613.
    [69] 杨燕, 耿超, 李枫, 等. 基于3-dB光纤耦合器的级联式光纤激光相干合成方法研究[J]. 光学学报, 2015, 35:s106005 doi: 10.3788/AOS201535.s106005

    Yang Yan, Geng Chao, Li Feng, et al. Research of cascaded coherent combining of fiber lasers based on 3-dB fiber couplers[J]. Acta Optica Sinica, 2015, 35: s106005 doi: 10.3788/AOS201535.s106005
    [70] Yang Yan, Geng Chao, Li Feng, et al. Combining module based on coherent polarization beam combining[J]. Applied Optics, 2017, 56(7): 2020-2028. doi: 10.1364/AO.56.002020
    [71] 杨燕. 基于光纤器件相干合成的多孔径接收技术研究[D]. 成都: 中国科学院光电技术研究所, 2018

    Yang Yan. Research on multi-aperture receiver with fiber-based coherent beam combining[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2018
    [72] 耿超, 杨燕, 李枫, 等. 光纤激光相干合成研究进展[J]. 光电工程, 2018, 45:170692

    Geng Chao, Yang Yan, Li Feng, et al. Research progress of fiber laser coherent combining[J]. Opto-Electronic Engineering, 2018, 45: 170692
    [73] Ahn H K, Kong H J. Cascaded multi-dithering theory for coherent beam combining of multiplexed beam elements[J]. Optics Express, 2015, 23(9): 12407-12413. doi: 10.1364/OE.23.012407
    [74] Freier C, Legge S, Roberts L, et al. Scalable all-fiber coherent beam combination using digital control[J]. Applied Optics, 2022, 61(15): 4543-4548. doi: 10.1364/AO.456360
    [75] Birks T A, Gris-Sánchez I, Yerolatsitis S, et al. The photonic lantern[J]. Advances in Optics and Photonics, 2015, 7(2): 107-167. doi: 10.1364/AOP.7.000107
    [76] Montoya J, Aleshire C, Hwang C, et al. Photonic lantern adaptive spatial mode control in LMA fiber amplifiers[J]. Optics Express, 2016, 24(4): 3405-3413. doi: 10.1364/OE.24.003405
    [77] Aleshire C, Montoya J, Hwang C, et al. Photonic lantern mode control in few-moded fiber amplifiers using SPGD[C]//Proceedings of the CLEO: Science and Innovations 2016. 2016: SM2Q. 6.
    [78] Montoya J, Hwang C, Martz D, et al. Photonic lantern kW-class fiber amplifier[J]. Optics Express, 2017, 25(22): 27543-27550. doi: 10.1364/OE.25.027543
    [79] Montoya J, Aleshire C, Hwang C, et al. Transverse-mode instability mitigation using photonic-lantern adaptive spatial mode control[C]//Proceedings of the CLEO: Science and Innovations. 2017: SM1L. 6.
    [80] Noordegraaf D, Skovgaard P M W, Maack M D, et al. Multi-mode to single-mode conversion in a 61 port Photonic Lantern[J]. Optics Express, 2010, 18(5): 4673-4678. doi: 10.1364/OE.18.004673
    [81] Noordegraaf D, Skovgaard P M W, Sandberg R H, et al. Nineteen-port photonic lantern with multimode delivery fiber[J]. Optics Letters, 2012, 37(4): 452-454. doi: 10.1364/OL.37.000452
    [82] Lu Yao, Liu Wenguang, Chen Zilun, et al. Spatial mode control based on photonic lanterns[J]. Optics Express, 2021, 29(25): 41788-41797. doi: 10.1364/OE.440326
    [83] Lu Yao, Chen Zilun, Liu Wenguang, et al. Stable single transverse mode excitation in 50 µm core fiber using a photonic-lantern-based adaptive control system[J]. Optics Express, 2022, 30(13): 22435-22441. doi: 10.1364/OE.458997
    [84] Wang Baishi, Mies E. Review of fabrication techniques for fused fiber components for fiber lasers[C]//Proceedings of SPIE 7195, Fiber Lasers VI: Technology, Systems, and Applications. 2009: 71950A.
    [85] Rothenberg J E, Cheung E C T. Integrated spectral and all-fiber coherent beam combination: 8184361[P]. 2012-05-22.
    [86] Rothenberg J E. All-fiber integrated high power coherent beam combination: 8184363B2[P]. 2012-05-22.
    [87] Shamir Y, Zuitlin R, Sintov Y, et al. 3kW-level incoherent and coherent mode combining via all-fiber fused Y-couplers[C]//Proceedings of the Frontiers in Optics 2012. 2012: FW6C. 1.
    [88] Shekel E, Vidne Y, Urbach B. 16kW single mode CW laser with dynamic beam for material processing[C]//Proceedings of SPIE 11260, Fiber Lasers XVII: Technology and Systems. 2020: 1126021
    [89] Li Jie, Zhao Haichuan, Chen Zilun, et al. All-fiber active coherent combining via a fiber combiner[J]. Optics Communications, 2013, 286: 273-276. doi: 10.1016/j.optcom.2012.08.074
    [90] Yang Baolai, Wang Xiaolin, Ma Pengfei, et al. Active phase locking of four Yb-doped fiber amplifiers with a multi-mode fiber combiner[C]//Proceedings of the Fiber-Based Technologies and Applications 2014. 2014: JF2A. 6.
    [91] 杨保来. 全光纤结构光纤激光主被动相干合成技术研究[D]. 长沙: 国防科学技术大学, 2014

    Yang Baolai. Study on active and passive coherent combining of fiber lasers in all-fiber configuration[D]. Changsha: National University of Defense Technology, 2014
    [92] Uberna R, Bratcher A, Alley T G, et al. Coherent combination of high power fiber amplifiers in a two-dimensional re-imaging waveguide[J]. Optics Express, 2010, 18(13): 13547-13553. doi: 10.1364/OE.18.013547
    [93] Tao Rumao, Si Lei, Ma Yanxing, et al. Coherent beam combination of fiber lasers with a strongly confined waveguide: numerical model[J]. Applied Optics, 2012, 51(24): 5826-5833. doi: 10.1364/AO.51.005826
    [94] Tao Rumao, Wang Xiaolin, Xiao Hu, et al. Coherent beam combination of fiber lasers with a strongly confined tapered self-imaging waveguide: theoretical modeling and simulation[J]. Photonics Research, 2013, 1(4): 186-196. doi: 10.1364/PRJ.1.000186
    [95] Haynes J R, Baggett J C, Monro T M, et al. Square core jacketed air-clad fiber[C]//2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference. 2006.
    [96] Blomster O, Blomqvist M. Square formed fiber optics for high power applications[C]//Proceedings of the 4th International WLT-Conference on Lasers in Manufacturing. 2007.
    [97] Blomqvist M, Campbell S, Latokartano J, et al. Multi-kW laser cladding using cylindrical collimators and square-formed fibers[C]//Proceedings of SPIE 8239, High Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications. 2012: 82390L.
    [98] Matsuura Y, Akiyama D, Miyagi M. Beam homogenizer for hollow-fiber delivery system of excimer laser light[J]. Applied Optics, 2003, 42(18): 3505-3508. doi: 10.1364/AO.42.003505
    [99] Konishi K, Kanie T, Takahashi K, et al. Development of rectangular core optical fiber cable for high power laser[J]. SEI Technical Review, 2010(71): 109-112.
    [100] Choi I S, Park J, Jeong H, et al. Fabrication of 4×1 signal combiner for high-power lasers using hydrofluoric acid[J]. Optics Express, 2018, 26(23): 30667-30677. doi: 10.1364/OE.26.030667
    [101] Fu Min, Li Zhixian, Wang Zefeng, et al. Research on a 4×1 fiber signal combiner with high beam quality at a power level of 12kW[J]. Optics Express, 2021, 29(17): 26658-26668. doi: 10.1364/OE.433047
    [102] Zou Shuzhen, Yu Haijuan, Zuo Jiexi, et al. Kilowatt-level 4×1 fiber combiner of low brightness loss with a square core output fiber[J]. Journal of Lightwave Technology, 2021, 39(7): 2130-2135. doi: 10.1109/JLT.2020.3045510
    [103] Yan Yuefang, Liu Yu, Zhang Haoyu, et al. Principle and numerical demonstration of high power all-fiber coherent beam combination based on self-imaging effect in a square core fiber[J]. Photonics Research, 2022, 10(2): 444-455. doi: 10.1364/PRJ.441384
    [104] Liu Yu, Li Yue, Li Yuwei, et al. Fabrication of all-fiber 2×2 coherent beam combiner for high power CBC applications[C]//Proceedings of the Laser Applications Conference 2021. 2021: JTu1A. 19.
  • 加载中
图(22)
计量
  • 文章访问数:  1084
  • HTML全文浏览量:  329
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-29
  • 修回日期:  2022-11-29
  • 录用日期:  2022-12-28
  • 网络出版日期:  2023-02-20
  • 刊出日期:  2023-03-30

目录

    /

    返回文章
    返回