留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间电荷和介质表面电荷对微放电演化过程的影响

王新波 申发中 于明 崔万照

王新波, 申发中, 于明, 等. 空间电荷和介质表面电荷对微放电演化过程的影响[J]. 强激光与粒子束, 2023, 35: 033003. doi: 10.11884/HPLPB202335.220324
引用本文: 王新波, 申发中, 于明, 等. 空间电荷和介质表面电荷对微放电演化过程的影响[J]. 强激光与粒子束, 2023, 35: 033003. doi: 10.11884/HPLPB202335.220324
Wang Xinbo, Shen Fazhong, Yu Ming, et al. Impacts of space and dielectric surface charges on evolution of multipactors[J]. High Power Laser and Particle Beams, 2023, 35: 033003. doi: 10.11884/HPLPB202335.220324
Citation: Wang Xinbo, Shen Fazhong, Yu Ming, et al. Impacts of space and dielectric surface charges on evolution of multipactors[J]. High Power Laser and Particle Beams, 2023, 35: 033003. doi: 10.11884/HPLPB202335.220324

空间电荷和介质表面电荷对微放电演化过程的影响

doi: 10.11884/HPLPB202335.220324
基金项目: 国家自然科学基金项目(61801376, 51827809); 空间微波技术重点实验室稳定支持基金项目(2020SSFNKLSMT-02); 深圳市电磁信息重点实验室基金项目(ZDSYS20210709113201005)
详细信息
    作者简介:

    王新波,xinbof@163.com

    通讯作者:

    崔万照,cuiwanzhao@126.com

  • 中图分类号: O462.2

Impacts of space and dielectric surface charges on evolution of multipactors

  • 摘要: 微放电是制约航天器微波部件功率容量的主要瓶颈之一。以介质微波部件中典型的介质加载平行板波导为例,基于三维粒子模拟分别对仅考虑外加微波场(情况1)、考虑外加微波场和空间电荷(情况2)以及考虑外加微波场、空间电荷和介质表面电荷(情况3)三种情况下微放电演化过程中电子数目、瞬态二次电子发射系数、归一化反射波电压以及介质表面与上金属板之间的间隙电压随时间的变化进行了仿真,并给出了情况3电子分布和介质表面电荷密度随时间的变化过程。在此基础上,明确了空间电荷和介质表面电荷在微放电过程中所起的不同作用:即空间电荷会使微放电达到饱和状态,介质表面电荷则导致微放电饱和状态无法持续,最后自行熄灭。介质表面电荷导致了微放电过程中介质和金属瞬态二次电子发射系数下降速率不一致,归一化反射波电压幅度随时间变化的包络类似于“眼睛”形状、间隙电压类直流偏置、非对称电子能量分布等特殊现象。
  • 图  1  介质加载平行板波导模型

    Figure  1.  Model of a parallel-plate waveguide loaded by a single dielectric layer

    图  2  介质加载平行板波导的结构和电场分布

    Figure  2.  Structure and field distribution of a dielectric-loaded parallel-plate waveguide

    图  3  银的基于Vaughan模型的二次电子发射系数曲线

    Figure  3.  Secondary electron yield (SEY) of silver based on Vaughan’s model

    图  4  入射电子速度vim和极角θim、二次电子发射速度vem极角θem和方位角φem的定义示意图

    Figure  4.  Scheme of secondary emission velocity vem, polar angle θem and azimuth angle φem with incident velocity vim and incident angle θim

    图  5  三种情况的电子数目时变曲线

    Figure  5.  Dynamic evolution of population of electrons for three cases

    图  6  瞬态二次电子发射系数时变曲线

    Figure  6.  Instantaneous secondary electron yield (SEY) versus time

    图  7  归一化反射波电压时变曲线

    Figure  7.  Normalized reflected wave voltage versus time

    图  8  介质表面与上金属板间隙电压时变曲线

    Figure  8.  Gap voltage between the dielectric surface and upper metallic plate surface versus time

    图  9  情况3电子分布随时间的变化

    Figure  9.  Electron distribution versus time for case 3

    图  10  情况3介质表面电荷密度随时间的变化

    Figure  10.  Charge density on the surface of dielectric versus time for case 3

    图  11  情况2饱和阶段电子能量随位置的分布

    Figure  11.  Electron energy distribution versus position for case 2 in saturation state

    图  12  情况3饱和阶段电子能量随位置的分布

    Figure  12.  Electron energy distribution versus position for case 3 in saturation state

    图  13  情况3熄灭阶段电子能量随位置的分布

    Figure  13.  Electron energy distribution versus position for case 3 in extinguishing state

  • [1] Farnsworth P T. Television by electron image scanning[J]. Journal of the Franklin Institute, 1934, 218(4): 411-444. doi: 10.1016/S0016-0032(34)90415-4
    [2] Vaughan J R M. Multipactor[J]. IEEE Transactions on Electron Devices, 1988, 35(7): 1172-1180. doi: 10.1109/16.3387
    [3] Woode A, Petit J. Investigations into multipactor breakdown in satellite microwave payloads[J]. ESA Journal, 1990, 14(4): 467-478.
    [4] Rozario N, Lenzing H F, Reardon K F, et al. Investigation of Telstar 4 spacecraft Ku-band and C-band antenna components for multipactor breakdown[J]. IEEE Transactions on Microwave Theory and Techniques, 1994, 42(4): 558-564. doi: 10.1109/22.285060
    [5] Yu Ming. Power-handling capability for RF filters[J]. IEEE Microwave Magazine, 2007, 8(5): 88-97. doi: 10.1109/MMM.2007.904712
    [6] Panariello A, Yu Ming, Ernst C. Ku-band high power dielectric resonator filters[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(1): 382-392. doi: 10.1109/TMTT.2012.2229292
    [7] Li Shuqi, Wang Ying, Yu Ming, et al. Efficient modeling of Ku-band high power dielectric resonator filter with applications of neural networks[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(8): 3427-3435. doi: 10.1109/TMTT.2019.2921359
    [8] Kishek R A, Lau Y Y, Ang L K, et al. Multipactor discharge on metals and dielectrics: Historical review and recent theories[J]. Physics of Plasmas, 1998, 5(5): 2120-2126. doi: 10.1063/1.872883
    [9] Kishek R A, Lau Y Y. Multipactor discharge on a dielectric[J]. Physical Review Letters, 1998, 80(1): 193-196. doi: 10.1103/PhysRevLett.80.193
    [10] Chang Chao, Liu Guozhi, Tang Chuanxiang, et al. Review of recent theories and experiments for improving high-power microwave window breakdown thresholds[J]. Physics of Plasmas, 2011, 18: 055702. doi: 10.1063/1.3560599
    [11] Ang L K, Lau Y Y, Kishek R A, et al. Power deposited on a dielectric by multipactor[J]. IEEE Transactions on Plasma Science, 1998, 26(3): 290-295. doi: 10.1109/27.700756
    [12] Torregrosa G, Coves A, Vicente C P, et al. Time evolution of an electron discharge in a parallel-plate dielectric-loaded waveguide[J]. IEEE Electron Device Letters, 2006, 27(7): 619-621. doi: 10.1109/LED.2006.877284
    [13] Coves Á, Torregrosa-Penalva G, Vicente C, et al. Multipactor discharges in parallel-plate dielectric-loaded waveguides including space-charge effects[J]. IEEE Transactions on Electron Devices, 2008, 55(9): 2505-2511. doi: 10.1109/TED.2008.927945
    [14] Torregrosa-Penalva G, Coves Á, Martinez B G, et al. Multipactor susceptibility charts of a parallel-plate dielectric-loaded waveguide[J]. IEEE Transactions on Electron Devices, 2010, 57(5): 1160-1166. doi: 10.1109/TED.2010.2043182
    [15] Sounas A L, Sorolla E, Mattes M. Investigation of multipactor steady state in parallel-plate waveguides loaded by a single dielectric slab[C]//8th International Workshop on Multipactor, Corona and Passive Intermodulation. 2014.
    [16] Sounas A, Sorolla E, Mattes M. Multipactor analysis in parallel-plate waveguides loaded by a single dielectric slab[C]. 8th European Conference on Antennas and Propagation. 2014: 1469-1470.
    [17] Sounas A. Modeling of long-term multipactor evolution in microwave components including dielectric layers[D]. Lausanne: École Polytechnique Fédérale de Lausanne, 2015.
    [18] 翟永贵, 王瑞, 王洪广, 等. 介质部分填充平行平板传输线微放电过程分析[J]. 物理学报, 2018, 67:157901 doi: 10.7498/aps.67.20180351

    Zhai Yonggui, Wang Rui, Wang Hongguang, et al. Multipactor in parallel-plate transmission line partially filled with dielectric material[J]. Acta Physica Sinica, 2018, 67: 157901 doi: 10.7498/aps.67.20180351
    [19] Langellotti S V, Jordan N M, Lau Y Y, et al. CST particle studio simulations of coaxial multipactor and comparison with experiments[J]. IEEE Transactions on Plasma Science, 2020, 48(6): 1942-1949. doi: 10.1109/TPS.2020.2981257
    [20] ECSS-20-01A-2003, Space engineering: multipacting design and test[S].
    [21] Vaughan J R M. A new formula for secondary emission yield[J]. IEEE Transactions on Electron Devices, 1989, 36(9): 1963-1967. doi: 10.1109/16.34278
    [22] Vicente C, Mattes M, Wolk D, et al. Multipactor breakdown prediction in rectangular waveguide based components[C]. IEEE MTT-S International Microwave Symposium Digest, 2005. Long Beach, USA: IEEE, 2005: 1055-1058.
    [23] Anza S, Vicente C, Gimeno B, et al. Long-term multipactor discharge in multicarrier systems[J]. Physics of Plasmas, 2007, 14: 082112. doi: 10.1063/1.2768019
  • 加载中
图(13)
计量
  • 文章访问数:  614
  • HTML全文浏览量:  218
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-08
  • 修回日期:  2022-11-29
  • 网络出版日期:  2022-11-30
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回