留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固态有源相控阵快前沿脉冲发射及空间合成

王乃志 吴鸿超 王侃

王乃志, 吴鸿超, 王侃. 固态有源相控阵快前沿脉冲发射及空间合成[J]. 强激光与粒子束, 2023, 35: 053003. doi: 10.11884/HPLPB202335.220338
引用本文: 王乃志, 吴鸿超, 王侃. 固态有源相控阵快前沿脉冲发射及空间合成[J]. 强激光与粒子束, 2023, 35: 053003. doi: 10.11884/HPLPB202335.220338
Wang Naizhi, Wu Hongchao, Wang Kan. Fast leading-edge pulse emission and spatial combination of solid-state active phased array[J]. High Power Laser and Particle Beams, 2023, 35: 053003. doi: 10.11884/HPLPB202335.220338
Citation: Wang Naizhi, Wu Hongchao, Wang Kan. Fast leading-edge pulse emission and spatial combination of solid-state active phased array[J]. High Power Laser and Particle Beams, 2023, 35: 053003. doi: 10.11884/HPLPB202335.220338

固态有源相控阵快前沿脉冲发射及空间合成

doi: 10.11884/HPLPB202335.220338
详细信息
    作者简介:

    王乃志,nzwang@163.com

  • 中图分类号: TN82

Fast leading-edge pulse emission and spatial combination of solid-state active phased array

  • 摘要: 快前沿射频脉冲发射是固态有源相控阵可实现的优势功能。分析了X波段固态有源相控阵实现快前沿射频脉冲发射的必要条件,包括激励传输、功率放大、定时同步和孔径渡越等影响因素及设计要点。相应的分析结论应用于某型X波段固态有源相控阵的样机研制,最终实现了数千个固态有源通道的快前沿射频脉冲的高效空间合成,合成射频脉冲前沿低于5 ns,验证了分析与设计的有效性。
  • 图  1  发射链路框图

    Figure  1.  Flow chart of RF power transmitting

    图  2  波导色散对脉冲上升沿的影响

    Figure  2.  Effect of waveguide dispersion on pulse leading-edge

    图  3  发射定时信号嵌套关系

    Figure  3.  Timing sequence for pulse modulation

    图  4  TR2时域离散对合成脉冲波形的影响

    Figure  4.  Effect of timing signal discretization on spatial pulse combination

    图  5  孔径渡越时间对合成脉冲波形的影响

    Figure  5.  Effect of aperture fill time on spatial pulse combination

    图  6  样机试验场景及快前沿脉冲合成结果

    Figure  6.  Prototype and emission pulse with leading-edge shorter than 5 ns

    表  1  波导色散对脉冲前沿上升时间的影响

    Table  1.   Effect of waveguide dispersion on pulse leading-edge

    leading edge of input pulse/nsleading edge of output pulse/ns
    BJ100, 7 mBJ100, 14 mBJ84, 7 mBJ84, 14 m
    14.807.602.073.32
    23.856.142.442.81
    34.145.423.143.61
    55.536.304.925.12
    77.127.716.856.90
    109.8410.079.909.79
    下载: 导出CSV
  • [1] 蒋廷勇. 固态器件合成高功率微波技术研究[D]. 北京: 清华大学, 2016: 1-2

    Jiang Tingyong. High power microwave power combination with solid-state device[D]. Beijing: Tsinghua University, 2016: 1-2
    [2] 赵鸿燕. 国外高功率微波武器发展研究[J]. 航空兵器, 2018(5):21-28 doi: 10.19297/j.cnki.41-1228/tj.2018.05.002

    Zhao Hongyan. Research on overseas high power microwave weapon development[J]. Aero Weaponry, 2018(5): 21-28 doi: 10.19297/j.cnki.41-1228/tj.2018.05.002
    [3] Wu Y F, Moore M, Saxler A, et al. 40-W/mm double field-plated GaN HEMTs[C]//Proceedings of the 64th Device Research Conference. 2006: 151-152.
    [4] 侯小林, 羊彦, 高健健, 等. 雷达低截获概率信号及验证方法[J]. 西安电子科技大学学报(自然科学版), 2012, 39(4):184-190

    Hou Xiaolin, Yang Yan, Gao Jianjian, et al. Methods for testing the low probability of interception performance of radar signals[J]. Journal of Xidian University, 2012, 39(4): 184-190
    [5] Stimson G W. Introduction to airborne radar[M]. Mendham: SciTech Publishing, 1998.
    [6] 吴顺君, 梅晓春. 雷达信号处理和数据处理技术[M]. 北京: 电子工业出版社, 2008

    Wu Shunjun, Mei Xiaochun. Radar signal processing and data processing technology[M]. Beijing: Publishing House of Electronics Industry, 2008
    [7] 李吉浩. 高功率脉冲对PIN限幅器的毁伤效应研究[J]. 微波学报, 2012, 28(s3):315-318 doi: 10.14183/j.cnki.1005-6122.2012.s3.054

    Li Jihao. Research on HPM pulse damage effect of PIN limiter[J]. Journal of Microwaves, 2012, 28(s3): 315-318 doi: 10.14183/j.cnki.1005-6122.2012.s3.054
    [8] 陈自东, 秦风, 赵景涛, 等. 高功率微波作用下限幅器尖峰泄漏特性[J]. 强激光与粒子束, 2020, 31:103014 doi: 10.11884/HPLPB202032.200097

    Chen Zidong, Qin Feng, Zhao Jingtao, et al. Spike leakage characteristic of limiter irradiated by high power microwave[J]. High Power Laser and Particle Beams, 2020, 31: 103014 doi: 10.11884/HPLPB202032.200097
    [9] 陈曦, 杜正伟, 龚克. 脉冲宽度对PIN限幅器微波脉冲热效应的影响[J]. 强激光与粒子束, 2010, 22(7):1602-1606 doi: 10.3788/HPLPB20102207.1602

    Chen Xi, Du Zhengwei, Gong Ke. Effect of pulse width on thermal effect of microwave pulse on PIN limiter[J]. High Power Laser and Particle Beams, 2010, 22(7): 1602-1606 doi: 10.3788/HPLPB20102207.1602
    [10] 李勇, 宣春, 谢海燕, 等. 电磁脉冲作用下PIN二极管的响应[J]. 强激光与粒子束, 2013, 25(8):2061-2066 doi: 10.3788/HPLPB20132508.2061

    Li Yong, Xuan Chun, Xie Haiyan, et al. Response of PIN diode to electromagnetic pulse[J]. High Power Laser and Particle Beams, 2013, 25(8): 2061-2066 doi: 10.3788/HPLPB20132508.2061
    [11] 王冬冬, 邓峰, 郑生全, 等. PIN二极管限幅器的电磁脉冲损伤特性试验[J]. 中国舰船研究, 2015, 10(2):65-69 doi: 10.3969/j.issn.1673-3185.2015.02.012

    Wang Dongdong, Deng Feng, Zheng Shengquan, et al. Experimental investigation on the EMP damage characteristics of PIN diode limiters[J]. Chinese Journal of Ship Research, 2015, 10(2): 65-69 doi: 10.3969/j.issn.1673-3185.2015.02.012
    [12] 周敏, 郭庆功, 黄卡玛. PIN限幅二极管结温对尖峰泄漏的影响[J]. 强激光与粒子束, 2008, 20(2):277-280

    Zhou Min, Guo Qinggong, Huang Kama. Effect on peak leakage caused by junction temperature rise in PIN diode limiter[J]. High Power Laser and Particle Beams, 2008, 20(2): 277-280
    [13] 戈弋, 黄华, 袁欢. 温度和机械弯曲引起的同轴电缆相位变化特性[J]. 太赫兹科学与电子信息学报, 2019, 17(4):621-626 doi: 10.11805/TKYDA201904.0621

    Ge Yi, Huang Hua, Yuan Huan. Phase characteristics of coaxial cable caused by temperature and mechanical bending[J]. Journal of Terahertz Science and Electronic Information Technology, 2019, 17(4): 621-626 doi: 10.11805/TKYDA201904.0621
    [14] 张晨, 赖清华. 相控阵雷达受孔径渡越时间影响的研究[J]. 微波学报, 2017, 33(4):67-69,84 doi: 10.14183/j.cnki.1005-6122.201704015

    Zhang Chen, Lai Qinghua. Research of aperture fill time effect on phased array radar[J]. Journal of Microwaves, 2017, 33(4): 67-69,84 doi: 10.14183/j.cnki.1005-6122.201704015
    [15] 张光义. 相控阵雷达原理[M]. 北京: 国防工业出版社, 2009

    Zhang Guangyi. Principles of phased array radar[M]. Beijing: National Defense Industry Press, 2009
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  452
  • HTML全文浏览量:  155
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-13
  • 修回日期:  2023-02-19
  • 录用日期:  2023-02-02
  • 网络出版日期:  2023-02-28
  • 刊出日期:  2023-04-07

目录

    /

    返回文章
    返回