留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

适用于高强度辐射场构建的多模反射面天线

刘迎喜 伍捍东 任宇辉

刘迎喜, 伍捍东, 任宇辉. 适用于高强度辐射场构建的多模反射面天线[J]. 强激光与粒子束, 2023, 35: 033005. doi: 10.11884/HPLPB202335.220341
引用本文: 刘迎喜, 伍捍东, 任宇辉. 适用于高强度辐射场构建的多模反射面天线[J]. 强激光与粒子束, 2023, 35: 033005. doi: 10.11884/HPLPB202335.220341
Liu Yingxi, Wu Handong, Ren Yuhui. Multimode reflector antenna suitable for construction of a high intensity radiated field[J]. High Power Laser and Particle Beams, 2023, 35: 033005. doi: 10.11884/HPLPB202335.220341
Citation: Liu Yingxi, Wu Handong, Ren Yuhui. Multimode reflector antenna suitable for construction of a high intensity radiated field[J]. High Power Laser and Particle Beams, 2023, 35: 033005. doi: 10.11884/HPLPB202335.220341

适用于高强度辐射场构建的多模反射面天线

doi: 10.11884/HPLPB202335.220341
基金项目: 陕西省重点研发计划项目(2022GY-096)
详细信息
    作者简介:

    刘迎喜,liuyingxi@hdmicrowave.com

    伍捍东,whd@hdmicrowave.com

    通讯作者:

    任宇辉,ryhui@nwu.edu.cn

  • 中图分类号: TN823

Multimode reflector antenna suitable for construction of a high intensity radiated field

  • 摘要: 高强度辐射场构建系统是对多种武器进行电磁辐照效应试验的关键装备,其要求在距天线一定距离的区域内产生高强度且尽量均匀分布的电磁场。本文设计了一款适用于该系统的X波段偏置卡塞格伦多模反射面天线。用反射面天线是为了获得尽可能高的增益,使期望区域内的场强尽可能大;用多模反射面理论实现了窄波束的平顶赋形,使期望区域内的场趋于均匀分布,区域外的场迅速减小。实测结果表明天线增益大于29.8 dB,3 dB波束宽度不小于4.6°,在此范围内方向图幅度起伏小于2 dB,平顶特性明显。此外,偏置的反射面天线还有馈源遮挡小、馈线损耗低和易于折叠收藏等优点,可以很好的应用于电磁环境模拟试验设备中。
  • 图  1  多模反射面天线

    Figure  1.  Multimode reflector antenna

    图  2  偏置反射面天线的基本类型

    Figure  2.  Basic types of offset reflector antenna

    图  3  偏置卡塞格伦多模反射面天线

    Figure  3.  Offset Cassegrain multimode reflector antenna

    图  4  口径0.45 m的常规偏置卡塞格伦天线仿真结果

    Figure  4.  Simulation results of conventional offset Cassegrain antenna with 0.45 m aperture

    图  5  口径1 m的偏置卡塞格伦多模反射面天线仿真结果

    Figure  5.  Simulation results of multimode offset Cassegrain antenna with 1 m aperture

    图  6  口径均为1m的天线中心频率处的方向图比较

    Figure  6.  Comparison of the pattern at the center frequency of antennas with 1m diameters

    图  7  天线实物图片

    Figure  7.  Photo of the antenna

    图  8  不同频点处天线的实测方向图

    Figure  8.  Measured patterns of the antenna at different frequency

    表  1  两种天线仿真性能比较

    Table  1.   Comparison of simulation performance of two antennas

    frequencymain reflector/mbroiling static zone/mgain/dBbeam width/(°)location (x, y)field intensity/(V·m−1)
    conventional
    Cassegrain antenna
    f0
    X band
    0.451.630.45.05×4.87(−0.8,0)66482
    (0.8,0)66203
    (0,0)89523
    (0,−0.8)67847
    (0,0.8)67884
    multimode
    Cassegrain antenna
    f0
    X band
    11.630.55.06×5.02(−0.8,0)68598
    (0.8,0)68338
    (0,0)91413
    (0,−0.8)66393
    (0,0.8)66318
    下载: 导出CSV

    表  2  天线性能总结

    Table  2.   Summary of antenna performance

    frequencygain/dB3 dB beam width/(°)
    pitch planeazimuth plane
    f0−10 MHz29.804.674.76
    f029.974.64.89
    f0+10 MHz30.254.804.96
    下载: 导出CSV
  • [1] Bieth F, Delmote P, Schneider M. Electromagnetic compatibility of a railgun implemented on a warship[J]. IEEE Transactions on Plasma Science, 2019, 47(6): 2987-2994. doi: 10.1109/TPS.2019.2894952
    [2] 谭志良, 李亚南, 宋培姣. 射频前端强电磁脉冲防护研究进展[J]. 北京理工大学学报, 2020, 40(3):231-242

    Tan Zhiliang, Li Ya’nan, Song Peijiao. Relevant research on electromagnetic pulse protection of RF front-end[J]. Transactions of Beijing Institute of Technology, 2020, 40(3): 231-242
    [3] 冀鑫炜, 田锦, 孙珊珊, 等. 地面雷达系统强电磁脉冲防护分析[J]. 现代雷达, 2018, 40(7):23-26

    Ji Xinwei, Tian Jin, Sun Shanshan, et al. Analysis of high intensity electromagnetic pulse protection for ground radar system[J]. Modern Radar, 2018, 40(7): 23-26
    [4] 吕英华. 信息时代电磁兼容领域的挑战与应对[J]. 电波科学学报, 2019, 34(4):393-402

    Lyu Yinghua. The challenge and reply to EMC fields in the times of information[J]. Chinese Journal of Radio Science, 2019, 34(4): 393-402
    [5] Liu Wei, Yan Zhaowen, Wang Jianwei, et al. Ultrawideband real-time monitoring system based on electro-optical under-sampling and data acquisition for near-field measurement[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 6603-6612. doi: 10.1109/TIM.2020.2968755
    [6] 张黎军, 陈昌华, 滕雁, 等. 高功率微波辐射场远场测量方法[J]. 强激光与粒子束, 2016, 28:053002 doi: 10.11884/HPLPB201628.053002

    Zhang Lijun, Chen Changhua, Teng Yan, et al. Farfield measurement method of high power microwave in radiation field[J]. High Power Laser and Particle Beams, 2016, 28: 053002 doi: 10.11884/HPLPB201628.053002
    [7] Shi Guochang, Liao Yi, Ying Xiaojun, et al. Methods of high intensity radiated field testing for civil aircraft[C]//Proceedings of 2017 International Symposium on Electromagnetic Compatibility. 2017.
    [8] Romero S F, Rodríguez P L, Bocanegra D E, et al. Comparing open area test site and resonant chamber for unmanned aerial vehicle’s high-intensity radiated field testing[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(6): 1704-1711. doi: 10.1109/TEMC.2017.2747771
    [9] 伍捍东. 多模反射面天线理论与技术研究[J]. 微波学报, 2021, 37(6):1-5

    Wu Handong. Research on the theory and technology of multimode reflector antenna[J]. Journal of Microwaves, 2021, 37(6): 1-5
    [10] Rao S K, Tang M Q. Stepped-reflector antenna for dual-band multiple beam satellite communications payloads[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(3): 801-811. doi: 10.1109/TAP.2006.869938
    [11] Manohar V, Kovitz J M, Rahmat-Samii Y. Synthesis and analysis of low profile, metal-only stepped parabolic reflector antenna[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(6): 2788-2798. doi: 10.1109/TAP.2018.2821694
    [12] Janken J, English W, Difonzo D. Radiation from “multimode” reflector antennas[C]//Proceedings of 1973 Antennas and Propagation Society International Symposium. 1973: 306-309.
    [13] Shee K K, Smith W T. Optimizing multimode horn feed arrays for offset reflector antennas using a constrained minimization algorithm to reduce cross polarization[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(12): 1883-1885. doi: 10.1109/8.650210
    [14] Granet C. Designing classical offset Cassegrain or Gregorian dual-reflector antennas from combinations of prescribed geometric parameters[J]. IEEE Antennas and Propagation Magazine, 2002, 44(3): 114-123. doi: 10.1109/MAP.2002.1028736
    [15] Rusch W V T, Prata A, Rahmat-Samii Y. Derivation and application of the equivalent paraboloid for classical offset Cassegrain and Gregorian antennas[J]. IEEE Transactions on Antennas and Propagation, 1990, 38(8): 1141-1149. doi: 10.1109/8.56949
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  595
  • HTML全文浏览量:  216
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-14
  • 修回日期:  2023-01-09
  • 录用日期:  2023-01-09
  • 网络出版日期:  2023-02-04
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回