留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁磁性加载复合管壳电子注聚焦性能的研究

刘洋 魏义学 史雪春 费娜 邱立 王严梅

刘洋, 魏义学, 史雪春, 等. 铁磁性加载复合管壳电子注聚焦性能的研究[J]. 强激光与粒子束, 2023, 35: 023008. doi: 10.11884/HPLPB202335.220344
引用本文: 刘洋, 魏义学, 史雪春, 等. 铁磁性加载复合管壳电子注聚焦性能的研究[J]. 强激光与粒子束, 2023, 35: 023008. doi: 10.11884/HPLPB202335.220344
Liu Yang, Wei Yixue, Shi Xuechun, et al. Study of electron beam focusing performance of ferromagnetic material loaded compound pipe shell[J]. High Power Laser and Particle Beams, 2023, 35: 023008. doi: 10.11884/HPLPB202335.220344
Citation: Liu Yang, Wei Yixue, Shi Xuechun, et al. Study of electron beam focusing performance of ferromagnetic material loaded compound pipe shell[J]. High Power Laser and Particle Beams, 2023, 35: 023008. doi: 10.11884/HPLPB202335.220344

铁磁性加载复合管壳电子注聚焦性能的研究

doi: 10.11884/HPLPB202335.220344
详细信息
    作者简介:

    刘 洋,2210563517@qq.com

  • 中图分类号: TN124

Study of electron beam focusing performance of ferromagnetic material loaded compound pipe shell

  • 摘要: 大功率行波管通常利用复合管壳提升高频系统的集成度和散热特性。宽带行波管采用复合管壳高频制造工艺时,由于加载翼片含有铁磁性材料(纯铁)使得聚焦系统的横向磁场分量变大,径向和角向磁场分量呈非均匀性,电子注聚焦困难。本文研究了周期永磁聚焦系统横向磁场产生的原因并建立理论模型,并对磁场分量和其对电子注形态的影响进行了仿真,仿真结果与理论计算结果一致。根据横向磁场分布模型对加载翼片的形状和数量进行优化仿真,结果表明9片齿形加载翼片方案可在保持慢波电路参数的同时,降低聚焦系统的横向磁场分量,改善电子注聚焦效果。
  • 图  1  管壳内部边界条件

    Figure  1.  Inner boundary condition of pipe shell

    图  2  电子在极靴平面的受力和速度

    Figure  2.  Force and velocity of the electron in the plane of pole piece

    图  3  两种聚焦系统磁场分布

    Figure  3.  Distribution of magnetic field of 2 focusing system

    图  4  极靴出口处电子分布

    Figure  4.  Distribution of electron at the pole piece exit

    图  5  T形翼片复合管壳PPM聚焦的电子注投影

    Figure  5.  Electron beam projection focused by T-shaped loaded vane compound pipe shell PPM focusing system

    图  6  磁场随加载数量变化的变化

    Figure  6.  Variation of magnetic field with the amount of loaded vanes

    图  7  慢波结构参数

    Figure  7.  Slow-wave structure parameters

    图  8  冷参数随RL变化的变化

    Figure  8.  Variation of cooling parameters with RL

    图  9  齿形加载聚焦的电子注投影

    Figure  9.  Electron beam projection focused by tooth-shaped loaded vane PPM focusing system

    表  1  聚焦系统结构尺寸参数

    Table  1.   Focusing system structure parameters

    inner radius/mmouter radius/mmthickness/mm
    pole piece1.961
    magnet2.86.52.6
    下载: 导出CSV
  • [1] VED IPP. Rethinking what we know about vacuum electronic devices[J]. The Journal of Electronic Defense, 2019, 42(2): 1-4.
    [2] Wong P, Zhang Peng, Luginsland J. Recent theory of traveling-wave tubes: a tutorial-review[J]. Plasma Research Express, 2020, 2: 023001. doi: 10.1088/2516-1067/ab9730
    [3] 王斌, 王风岩, 周旭, 等. 微波功率行波管及模块的应用发展趋势[J]. 真空电子技术, 2019(2):1-7 doi: 10.16540/j.cnki.cn11-2485/tn.2019.02.01

    Wang Bin, Wang Fengyan, Zhou Xu, et al. Application and development trend of TWTs and MPMs[J]. Vacuum Electronics, 2019(2): 1-7 doi: 10.16540/j.cnki.cn11-2485/tn.2019.02.01
    [4] Luo Jirun, Feng Jinjun, Gong Yubin. A review of microwave vacuum devices in China: theory and device development including high-power klystrons, spaceborne TWTs, and gyro-TWTs[J]. IEEE Microwave Magazine, 2021, 22(4): 18-33. doi: 10.1109/MMM.2020.3047747
    [5] 廖复疆. 真空电子技术—信息装备的心脏[M]. 北京: 国防工业出版社, 1999: 51-55

    Liao Fujiang. Vacuum electronic technology-heart of information equipment[M]. Beijing: National Defense Industry Press, 1999: 51-55
    [6] 李海波, 孟晓君, 魏义学, 等. 复合管壳在大功率连续波行波管中的应用[J]. 真空电子技术, 2014(4):10-11 doi: 10.3969/j.issn.1002-8935.2014.04.003

    Li Haibo, Meng Xiaojun, Wei Yixue, et al. The Application of compound pipe shell in high power continuous wave TWT[J]. Vacuum Electronics, 2014(4): 10-11 doi: 10.3969/j.issn.1002-8935.2014.04.003
    [7] 廖平, 杨中海, 雷文强, 等. 周期永磁聚焦电子注性能计算机模拟[J]. 强激光与粒子束, 2004, 16(1):68-72

    Liao Ping, Yang Zhonghai, Lei Wenqiang, et al. Computer simulation of electron beam characteristics focused by periodic permanent magnets[J]. High Power Laser and Particle Beams, 2004, 16(1): 68-72
    [8] 程玲莉, 王林梅, 王敬东, 等. 四注行波管周期永磁聚焦系统的优化设计[J]. 强激光与粒子束, 2019, 31:113005 doi: 10.11884/HPLPB201931.190153

    Cheng Lingli, Wang Linmei, Wang Jingdong, et al. Optimal design of periodic permanent magnetic focusing system for four-beam traveling wave tubes[J]. High Power Laser and Particle Beams, 2019, 31: 113005 doi: 10.11884/HPLPB201931.190153
    [9] 黎泽伦, 孟杰, 黄友均, 等. 多注行波管PPM聚焦系统横向磁场研究[J]. 合肥工业大学学报(自然科学版), 2014, 37(1):73-77

    Li Zelun, Meng Jie, Huang Youjun, et al. Study of transverse magnetic fields of multi-beam PPM focusing system[J]. Journal of Hefei University of Technology, 2014, 37(1): 73-77
    [10] Gilmour A S Jr. Principles of traveling wave tubes[M]. Boston: Artech House, 1994.
    [11] Paoloni C, Gamzina D, Letizia R, et al. Millimeter wave traveling wave tubes for the 21st Century[J]. Journal of Electromagnetic Waves and Applications, 2021, 35(5): 567-603. doi: 10.1080/09205071.2020.1848643
    [12] 余金清, 胡玉禄, 李斌. 行波管中聚焦磁场对互作用影响的研究[J]. 真空电子技术, 2011(1):21-25 doi: 10.3969/j.issn.1002-8935.2011.01.006

    Yu Jinqing, Hu Yulu, Li Bin. Research of the focusing magnetic’s impact on the interaction in TWT[J]. Vacuum Electronics, 2011(1): 21-25 doi: 10.3969/j.issn.1002-8935.2011.01.006
    [13] 郭佶玙. 行波管注波互作用高效率研究[D]. 成都: 电子科技大学, 2014

    Guo Jiyu. Study of beam-wave interaction with high efficiency in TWTs[D]. Chengdu: University of Electronic Science and Technology of China, 2014
    [14] 赵新刚, 李庆绩, 赵士录. 几种典型翼片加载螺旋线行波管色散及返波特性研究[J]. 真空电子技术, 2006(6):5-8 doi: 10.3969/j.issn.1002-8935.2006.06.002

    Zhao Xingang, Li Qingji, Zhao Shilu. Investigation of characters of dispersion and backward wave in helix TWTs with several typical vane load[J]. Vacuum Electronics, 2006(6): 5-8 doi: 10.3969/j.issn.1002-8935.2006.06.002
    [15] 李泉凤. 电磁场数值计算与电磁铁设计[M]. 北京: 清华大学出版社, 2002

    Li Quanfeng. Numerical calculation of electromagnetic field and electromagnet design[M]. Beijing: Tsinghua University Press, 2002
    [16] Carlsten B E, Earley L M, Krawczyk F L, et al. Stability of an emittance-dominated sheet-electron beam in planar wiggler and periodic permanent magnet structures with natural focusing[J]. Physical Review Special Topics-Accelerators and Beams, 2005, 8: 062001. doi: 10.1103/PhysRevSTAB.8.062001
    [17] Sharma R K, Choudhury A R, Arya S, et al. Design and experimental evaluation of dual-anode electron gun and PPM focusing of helix TWT[J]. IEEE Transactions on Electron Devices, 2015, 62(10): 3419-3425. doi: 10.1109/TED.2015.2470118
    [18] Kumar M, Geetha M K, Kumar M V. Design of magnetic focusing system for a compact Ka band helix TWT[J]. Defence Science Journal, 2021, 71(3): 329-331. doi: 10.14429/dsj.71.16810
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  459
  • HTML全文浏览量:  189
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-14
  • 修回日期:  2022-12-09
  • 网络出版日期:  2022-12-13
  • 刊出日期:  2023-01-14

目录

    /

    返回文章
    返回