留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速气流对C/SiC复合材料激光烧蚀行为影响的实验研究

王睿星 王喆 马特 崔悦 袁武 宋宏伟

王睿星, 王喆, 马特, 等. 高速气流对C/SiC复合材料激光烧蚀行为影响的实验研究[J]. 强激光与粒子束, 2023, 35: 051002. doi: 10.11884/HPLPB202335.220347
引用本文: 王睿星, 王喆, 马特, 等. 高速气流对C/SiC复合材料激光烧蚀行为影响的实验研究[J]. 强激光与粒子束, 2023, 35: 051002. doi: 10.11884/HPLPB202335.220347
Wang Ruixing, Wang Zhe, Ma Te, et al. Experimental study on the influences of high-speed airflow on the laser ablation behaviors of C/SiC composites[J]. High Power Laser and Particle Beams, 2023, 35: 051002. doi: 10.11884/HPLPB202335.220347
Citation: Wang Ruixing, Wang Zhe, Ma Te, et al. Experimental study on the influences of high-speed airflow on the laser ablation behaviors of C/SiC composites[J]. High Power Laser and Particle Beams, 2023, 35: 051002. doi: 10.11884/HPLPB202335.220347

高速气流对C/SiC复合材料激光烧蚀行为影响的实验研究

doi: 10.11884/HPLPB202335.220347
基金项目: 国家自然科学基金项目(11902322)
详细信息
    作者简介:

    王睿星,wangruixing@imech.ac.cn

    通讯作者:

    宋宏伟,songhw@imech.ac.cn

  • 中图分类号: TN249

Experimental study on the influences of high-speed airflow on the laser ablation behaviors of C/SiC composites

  • 摘要: 为了明确高速气流对C/SiC复合材料激光烧蚀行为的影响机制,开展了不同环境下强激光对C/SiC复合材料的烧蚀对比实验研究。利用激光器与高速风洞联合实验平台,完成了静态以及Ma 1.8,Ma 3.0,Ma 6.0气流环境下2D与3DN C/SiC复合材料激光烧蚀实验。结果表明,与静态环境相比,高速气流对C/SiC复合材料的激光烧蚀行为产生了显著的影响,气流的冲刷使得烧蚀坑呈现出更宽、更深、更光滑的变化趋势。随着气流速度的增长,线烧蚀速率与质量烧蚀速率逐渐增大,主要原因为当地静压降低引起的升华速率增大,以及动压增大引起的剥蚀速率增大。此外,通过实验对比了不同构型对C/SiC激光烧蚀行为的影响。结果表明:2D C/SiC复合材料由于厚度方向更低的导热能力、更低的孔隙率等原因,其在不同环境条件下抗烧蚀能力均强于3DN C/SiC复合材料。
  • 图  1  C/SiC复合材料碳纤维预制体示意图[19]

    Figure  1.  Schematic of carbon fiber preform of C/SiC composites[19]

    图  2  风洞环境中激光烧蚀实验系统示意图

    Figure  2.  Schematic of the laser ablation tests system in the wind tunnel

    图  3  C/SiC复合材料试样背表面温度历程对比

    Figure  3.  Comparison of the back-surface temperature history of C/SiC composite

    图  4  2D C/SiC烧蚀形貌演化历程

    Figure  4.  Evolution of 2D ablated C/SiC morphologies

    图  5  2D C/SiC最终正表面烧蚀形貌

    Figure  5.  Final ablation morphologies of the front surface of 2D C/SiC

    图  6  2D C/SiC最终烧蚀坑形貌

    Figure  6.  Final morphologies of the ablation pits of 2D C/SiC

    图  7  不同气流环境下2D C/SiC复合材料线烧蚀速率与质量烧蚀速率对比

    Figure  7.  Comparison for line ablation rate and mass ablation rate of 2D C/SiC composite in different airflow environment

    图  8  静态环境下的试样正表面实时烧蚀形貌

    Figure  8.  Real-time ablation morphologies of the front surface of the C/SiC sample in the static environment

    图  9  Ma 1.8气流条件下试样正表面实时烧蚀形貌

    Figure  9.  Real-time ablation morphologies of the front surface of the C/SiC samples in the Ma 1.8 airflow environment

    图  10  不同气流环境下不同构型C/SiC复合材料烧蚀速率对比

    Figure  10.  Comparison of the ablation rate of C/SiC composites with different structures in different airflow environments

    表  1  实验工况列表

    Table  1.   Parameters of the test conditions

    environmental conditionstotal temperature/Ktotal pressure/kPavelocity/(m·s−1)irradiation time/s
    static30010104~10
    Ma 1.83633235354~10
    Ma 3.081518508914~10
    Ma 6.01784425717874~10
    下载: 导出CSV
  • [1] 孙承纬, 陆启生, 范正修, 等. 强激光辐照效应[M]. 北京: 国防工业出版社, 2002: 1-151

    Sun Chengwei, Lu Qisheng, Fan Zhengxiu, et al. High power laser irradiation effects[M]. Beijing: National Defense Industry Press, 2002: 1-151
    [2] 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2):1-6 doi: 10.3321/j.issn:1000-3851.2007.02.001

    Zhang Litong, Cheng Laifei. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica, 2007, 24(2): 1-6 doi: 10.3321/j.issn:1000-3851.2007.02.001
    [3] 朱则刚. 陶瓷基复合材料展现发展价值开发应用新蓝海[J]. 现代技术陶瓷, 2013, 34(2):20-25 doi: 10.3969/j.issn.1005-1198.2013.02.005

    Zhu Zegang. Ceramic matrix composites show new blue ocean in exploiting and applicating the development value[J]. Advanced Ceramics, 2013, 34(2): 20-25 doi: 10.3969/j.issn.1005-1198.2013.02.005
    [4] Schmidt S, Beyer S, Knabe H, et al. Advanced ceramic matrix composite materials for current and future propulsion technology applications[J]. Acta Astronautica, 2004, 55(3): 409-420.
    [5] Zhang Litong, Cheng Laifei, Luan Xingang, et al. Environmental performance testing system for thermostructure materials applied in aeroengines[J]. Key Engineering Materials, 2006, 313: 183-190. doi: 10.4028/www.scientific.net/KEM.313.183
    [6] Su Meng, Cheng Laifei, Luan Xingang, et al. Laser ablation behaviors of C/SiC composites in air[J]. Acta Materiae Compositae Sinica, 2013, 30(6): 37-47.
    [7] Liu Qiaomu, Zhang Litong, Jiang Fengrui, et al. Laser ablation behaviors of SiC–ZrC coated carbon/carbon composites[J]. Surface and Coatings Technology, 2011, 205(17/18): 4299-4303.
    [8] Dang Xiaolin, Yin Xiaowei, Fan Xiaomeng, et al. Microstructural evolution of carbon fiber reinforced SiC-based matrix composites during laser ablation process[J]. Journal of Materials Science & Technology, 2019, 35(12): 2919-2925.
    [9] Tong Yonggang, Bai Shuxin, Zhang Hong, et al. Laser ablation behavior and mechanism of C/SiC composite[J]. Ceramics International, 2013, 39(6): 6813-6820. doi: 10.1016/j.ceramint.2013.02.012
    [10] Wang Yang, Chen Zhaofeng, Yu Shengjie. Ablation behavior and mechanism analysis of C/SiC composites[J]. Journal of Materials Research and Technology, 2016, 5(2): 170-182. doi: 10.1016/j.jmrt.2015.10.004
    [11] Chen Zhaofeng, Fang Dan, Miao Yunliang, et al. Comparison of morphology and microstructure of ablation centre of C/SiC composites by oxy-acetylene torch at 2900 and 3550 ℃[J]. Corrosion Science, 2008, 50(12): 3378-3381. doi: 10.1016/j.corsci.2008.07.019
    [12] 段刘阳, 罗磊, 王一光. 超高温陶瓷基复合材料的改性和烧蚀行为[J]. 中国材料进展, 2015, 34(10):762-769 doi: 10.7502/j.issn.1674-3962.2015.10.03

    Duan Liuyang, Luo Lei, Wang Yiguang. Modification and ablation behaviors of ultrahigh temperature ceramic matrix composites[J]. Materials China, 2015, 34(10): 762-769 doi: 10.7502/j.issn.1674-3962.2015.10.03
    [13] Fang Dan, Chen Zhaofeng, Song Yingdong, et al. Morphology and microstructure of 2.5 dimension C/SiC composites ablated by oxyacetylene torch[J]. Ceramics International, 2009, 35(3): 1249-1253. doi: 10.1016/j.ceramint.2008.06.008
    [14] 宋宏伟, 黄晨光. 激光辐照诱导的热与力学效应[J]. 力学进展, 2016, 46(1):435-477 doi: 10.6052/1000-0992-15-025

    Song Hongwei, Huang Chenguang. Progress in thermal-mechanical effects induced by laser[J]. Advances in Mechanics, 2016, 46(1): 435-477 doi: 10.6052/1000-0992-15-025
    [15] 张检民, 马志亮, 冯国斌, 等. 切向空气流速度对玻璃纤维增强树脂基复合材料激光烧蚀热的影响[J]. 中国激光, 2015, 42:0306004 doi: 10.3788/CJL201542.0306004

    Zhang Jianmin, Ma Zhiliang, Feng Guobin, et al. Influence of tangential airflows velocity on ablation heat of laser irradiated glass fiber reinforced resin composites[J]. Chinese Journal of Lasers, 2015, 42: 0306004 doi: 10.3788/CJL201542.0306004
    [16] 陈敏孙, 江厚满, 焦路光, 等. 切向气流作用下玻璃纤维复合材料的激光辐照效应[J]. 强激光与粒子束, 2013, 25(5):1075-1080 doi: 10.3788/HPLPB20132505.1075

    Chen Minsun, Jiang Houman, Jiao Luguang, et al. Laser irradiation effects on glass fiber composite subjected to tangential gas flow[J]. High Power Laser and Particle Beams, 2013, 25(5): 1075-1080 doi: 10.3788/HPLPB20132505.1075
    [17] 张文杰, 蒙文, 李云霞, 等. 切向气流对激光辐照效应影响的研究进展[J]. 激光与光电子学进展, 2016, 53:041403

    Zhang Wenjie, Meng Wen, Li Yunxia, et al. Research progress of tangential airflow impacting on laser irradiation[J]. Laser & Optoelectronics Progress, 2016, 53: 041403
    [18] 黄亿辉, 宋宏伟, 黄晨光. 超声速气流下强激光辐照靶体失效数值模拟[J]. 强激光与粒子束, 2013, 25(9):2229-2234 doi: 10.3788/HPLPB20132509.2229

    Huang Yihui, Song Hongwei, Huang Chenguang. Numerical simulation of failure of target irradiated by high-power laser subjected to supersonic airflow[J]. High Power Laser and Particle Beams, 2013, 25(9): 2229-2234 doi: 10.3788/HPLPB20132509.2229
    [19] Xu Huajie, Zhang Litong, Cheng Laifei. The yarn size dependence of tensile and in-plane shear properties of three-dimensional needled textile reinforced ceramic matrix composites[J]. Materials & Design, 2015, 67: 428-435.
    [20] Wang Fuyuan, Cheng Laifei, Zhang Qing, et al. Effect of surface morphology and densification on the infrared emissivity of C/SiC composites[J]. Applied Surface Science, 2014, 313: 670-676. doi: 10.1016/j.apsusc.2014.06.044
    [21] Wang Jiangtao, Ma Yuzhao, Liu Yuwen, et al. Experimental investigation on laser ablation of C/SiC composites subjected to supersonic airflow[J]. Optics & Laser Technology, 2019, 113: 399-406.
    [22] Wang Zhe, Wang Jiangtao, Song Hongwei, et al. Laser ablation behavior of C/SiC composites subjected to transverse hypersonic airflow[J]. Corrosion Science, 2021, 183: 109345. doi: 10.1016/j.corsci.2021.109345
    [23] Dimitrienko Y I. Thermomechanics of composite structures under high temperatures[M]. Dordrecht: Springer, 2016.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  557
  • HTML全文浏览量:  248
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-19
  • 修回日期:  2023-01-03
  • 录用日期:  2023-01-12
  • 网络出版日期:  2023-01-31
  • 刊出日期:  2023-04-07

目录

    /

    返回文章
    返回