留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性光学激光合束技术研究进展

崔璨 王月 王雨雷 白振旭 吕志伟

崔璨, 王月, 王雨雷, 等. 非线性光学激光合束技术研究进展[J]. 强激光与粒子束, 2023, 35: 041006. doi: 10.11884/HPLPB202335.220359
引用本文: 崔璨, 王月, 王雨雷, 等. 非线性光学激光合束技术研究进展[J]. 强激光与粒子束, 2023, 35: 041006. doi: 10.11884/HPLPB202335.220359
Cui Can, Wang Yue, Wang Yulei, et al. Research progress on nonlinear optics laser beam combining technology[J]. High Power Laser and Particle Beams, 2023, 35: 041006. doi: 10.11884/HPLPB202335.220359
Citation: Cui Can, Wang Yue, Wang Yulei, et al. Research progress on nonlinear optics laser beam combining technology[J]. High Power Laser and Particle Beams, 2023, 35: 041006. doi: 10.11884/HPLPB202335.220359

非线性光学激光合束技术研究进展

doi: 10.11884/HPLPB202335.220359
基金项目: 国家自然科学基金项目(62075056, 61927815); 天津市自然科学基金项目(20JCZDJC00430)
详细信息
    作者简介:

    崔 璨,cancui2021@hebut.edu.cn

    通讯作者:

    王雨雷,wyl@hebut.edu.cn

  • 中图分类号: TN248

Research progress on nonlinear optics laser beam combining technology

  • 摘要: 回顾了非线性光学激光合束技术的发展历程,阐述了基于光学相位共轭和基于非线性放大过程的合束思想和基本原理,梳理了重叠耦合、种子注入和布里渊四波混频增强相位锁定激光合束方式的标志性成果,总结了等离子体交叉光束能量转移、金刚石拉曼放大和液体布里渊放大激光合束技术的优势和瓶颈。面向高峰值功率、高平均功率、高重复频率激光输出的实现需求,基于布里渊放大激光合束技术具备系统结构简单、功率负载高且散热效率高的优点,提出了实现单脉冲能量100 J、脉冲宽度10 ns、重复频率10 Hz合束激光输出的可行性方案。
  • 图  1  两种基于SBS-PCM相位锁定的激光合束方式

    Figure  1.  Two kinds of SBS-PCM phase-locking laser beam combining methods

    图  2  N.G. Basov 两束垂直偏振泵浦光的相干合束示意图[31]

    Figure  2.  N.G. Basov coherent beam combining of two vertically polarized pump beams[31]

    图  3  Kumgang-4 kW相干合束激光系统光路图[39]

    Figure  3.  Diagram of Kumgang-4 kW coherent beam combining laser system[39]

    图  4  布里渊增强四波混频原理示意图[40]

    Figure  4.  Diagram of Brillouin enhanced four-wave mixing principle[40]

    图  5  布里渊增强四波混频相位共轭系统[31]

    Figure  5.  Brillouin-enhanced four-wave mixing phase-conjugating system[31]

    图  6  美国利弗莫尔实验室四路光相干合束光路示意图与输出近远场分布测量结果[42]

    Figure  6.  Schematic diagram of the four-beam optical coherent beam path with output near- and far- field distribution measurements at LLNL, USA[42]

    图  7  等离子体内Raman放大过程示意图[45]

    Figure  7.  Schematic diagram of Raman amplification process in plasma[45]

    图  8  美国利弗莫尔实验室等离子体八束激光合束实验[56]

    Figure  8.  Eight-beam laser beam combining in plasma experiment at LLNL, USA[56]

    图  9  R. K. Kirkwood等人[58]21路交叉能量转移实验示意图

    Figure  9.  Schematic diagram of the 21 cross beam energy transfer experiment by R. K. Kirkwood et al[58]

    图  10  四色前端系统光路示意图[62]

    Figure  10.  Four-color front-end system optical path diagram[62]

    图  11  澳大利亚麦考瑞大学基于拉曼放大的金刚石激光合束[66]

    Figure  11.  Raman amplification-based diamond laser beam combining at Macquarie University, Australia[66]

    图  12  主动频率补偿的非共线SBS百皮秒脉冲放大光路示意图[75]

    Figure  12.  Schematic diagram of the non-collinear SBS amplification process of hundreds-picosecond pulse with active frequency compensation[75]

    图  13  基于SBS放大激光合束技术的重复频率百焦耳激光系统设计方案[76]

    Figure  13.  Design of a repetitive-rated hundred-joule level laser system based on SBS amplification laser beam combining technology[76]

  • [1] Zylstra A B, Kritcher A L, Hurricane O A, et al. Experimental achievement and signatures of ignition at the National Ignition Facility[J]. Physical Review E, 2022, 106: 025202. doi: 10.1103/PhysRevE.106.025202
    [2] Le Pape S, Hopkins L F B, Divol L, et al. Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility[J]. Physical Review Letters, 2018, 120: 245003. doi: 10.1103/PhysRevLett.120.245003
    [3] Srinivas G, Gowda B H H K, Gowda H C, et al. Survey on laser guided missile systems and implementation by developing a laser guidance system[J]. Global Journal of Electronic and Communication Research, 2021, 12(1): 1-9. doi: 10.37622/GJECR/12.1.2021.1-9
    [4] Xu Hongfei, Xia Jiqiang, Yuan Zhaohui, et al. Design and implementation of differential drive AGV based on laser guidance[C]//Proceedings of the 2019 3rd International Conference on Robotics and Automation Sciences (ICRAS). 2019: 112-117.
    [5] Quazi M M, Ishak M, Fazal M A, et al. A comprehensive assessment of laser welding of biomedical devices and implant materials: recent research, development and applications[J]. Critical Reviews in Solid State and Materials Sciences, 2021, 46(2): 109-151. doi: 10.1080/10408436.2019.1708701
    [6] Sundar R, Ganesh P, Gupta R K, et al. Laser shock peening and its applications: a review[J]. Lasers in Manufacturing and Materials Processing, 2019, 6(4): 424-463. doi: 10.1007/s40516-019-00098-8
    [7] Veinhard M, Bellanger S, Daniault L, et al. Orbital angular momentum beams generation from 61 channels coherent beam combining femtosecond digital laser[J]. Optics Letters, 2021, 46(1): 25-28. doi: 10.1364/OL.405975
    [8] Klenke A, Müller M, Stark H, et al. Coherent beam combination of ultrafast fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24: 0902709.
    [9] Le Dortz J, Heilmann A, Antier M, et al. Highly scalable femtosecond coherent beam combining demonstrated with 19 fibers[J]. Optics Letters, 2017, 42(10): 1887-1890. doi: 10.1364/OL.42.001887
    [10] 辛国锋, 皮浩洋, 沈力, 等. 高功率半导体激光器光束非相干合成技术进展[J]. 激光与光电子学进展, 2010, 47:101404

    Xin Guofeng, Pi Haoyang, Shen Li, et al. Beam incoherence combination of high power laser diode[J]. Laser & Optoelectronics Progress, 2010, 47: 101404
    [11] Fan T Y. Laser beam combining for high-power, high-radiance sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 567-577. doi: 10.1109/JSTQE.2005.850241
    [12] Mcnaught S J, Asman C P, Injeyan H, et al. 100-kW coherently combined Nd: YAG MOPA laser array[C]//Proceedings of the Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest. 2009: FThD2.
    [13] 吴坚, 马阎星, 马鹏飞, 等. 光纤激光相干合成20 kW级高功率输出[J]. 红外与激光工程, 2021, 50:20210621 doi: 10.3788/IRLA20210621

    Wu Jian, Ma Yanxing, Ma Pengfei, et al. Fiber laser coherent synthesis 20 kW class high power output[J]. Infrared and Laser Engineering, 2021, 50: 20210621 doi: 10.3788/IRLA20210621
    [14] 刘泽金, 周朴, 陶汝茂, 等. 高能固态激光阵列光束合成技术浅析[J]. 光学学报, 2011, 31:0900113 doi: 10.3788/AOS201131.0900113

    Liu Zejin, Zhou Pu, Tao Rumao, et al. Analysis of beam combination technology of high-power LD pumped laser array[J]. Acta Optica Sinica, 2011, 31: 0900113 doi: 10.3788/AOS201131.0900113
    [15] Wang Dan, Du Qiang, Zhou Tong, et al. Stabilization of the 81-channel coherent beam combination using machine learning[J]. Optics Express, 2021, 29(4): 5694-5709. doi: 10.1364/OE.414985
    [16] Kunkel W M, Leger J R. Passive coherent laser beam combining with spatial mode selecting feedback[J]. IEEE Journal of Quantum Electronics, 2019, 55: 1600108.
    [17] Cheng Yong, Liu Xu, Wan Qiang, et al. Mutual injection phase locking coherent combination of solid-state lasers based on corner cube[J]. Optics Letters, 2013, 38(23): 5150-5152. doi: 10.1364/OL.38.005150
    [18] Linslal C L, Ayyaswamy P, Maji S, et al. Challenges in coherent beam combining of high power fiber amplifiers: a review[J]. ISSS Journal of Micro and Smart Systems, 2022, 11(1): 277-293. doi: 10.1007/s41683-022-00099-4
    [19] Fathi H, Närhi M, Gumenyuk R. Towards ultimate high-power scaling: Coherent beam combining of fiber lasers[J]. Photonics, 2021, 8: 566. doi: 10.3390/photonics8120566
    [20] Fsaifes I, Daniault L, Bellanger S, et al. Coherent beam combining of 61 femtosecond fiber amplifiers[J]. Optics Express, 2020, 28(14): 20152-20161. doi: 10.1364/OE.394031
    [21] Ostermeyer M, Kong H J, Kovalev V I, et al. Trends in stimulated Brillouin scattering and optical phase conjugation[J]. Laser and Particle Beams, 2008, 26(3): 297-362. doi: 10.1017/S0263034608000335
    [22] Mullen R A, Vickers D J, West L, et al. Phase conjugation by stimulated photorefractive scattering using a retroreflected seeding beam[J]. Journal of the Optical Society of America B, 1992, 9(9): 1726-1734. doi: 10.1364/JOSAB.9.001726
    [23] Moyer R H, Valley M, Cimolino M C. Beam combination through stimulated Brillouin scattering[J]. Journal of the Optical Society of America B, 1988, 5(12): 2473-2489. doi: 10.1364/JOSAB.5.002473
    [24] Moore T R, Boyd R W. Three-dimensional simulations of stimulated Brillouin scattering with focused Gaussian beams[J]. Journal of Nonlinear Optical Physics & Materials, 1996, 5(2): 387-408.
    [25] Heuer A, Menzel R. Principles of phase conjugating Brillouin mirrors[M]//Brignon A, Huignard J P. Phase Conjugate Laser Optics. Hoboken: John Wiley & Sons, Inc. , 2003: 19-62.
    [26] Fisher R A. Optical phase conjugation[M]. New York: Academic Press, 2012: 50-60.
    [27] Basov N G, Efimkov V F, Zubarev I G, et al. Inversion of Wavefront in SMBS of a depolarized pump[J]. Journal of Experimental and Theoretical Physics Letters, 1978, 28(4): 197-201.
    [28] Basov N G, Efimkov V F, Zubarev I G, et al. Influence of certain radiation parameters on wavefront reversal of a pump wave in a Brillouin mirror[J]. Soviet Journal of Quantum Electronics, 1979, 9(4): 455-458. doi: 10.1070/QE1979v009n04ABEH008908
    [29] Basov N G, Efimkov V F, Zubarev I G, et al. Control of the characteristics of reversing mirrors in the amplification regime[J]. Soviet Journal of Quantum Electronics, 1981, 11(10): 1335-1337. doi: 10.1070/QE1981v011n10ABEH008482
    [30] Sumida D S, Jones D C, Rockwell D A. An 8.2 J phase-conjugate solid-state laser coherently combining eight parallel amplifiers[J]. IEEE Journal of Quantum Electronics, 1994, 30(11): 2617-2627. doi: 10.1109/3.333716
    [31] Bowers M W, Boyd R W, Hankla A K. Brillouin-enhanced four-wave-mixing vector phase-conjugate mirror with beam-combining capability[J]. Optics Letters, 1997, 22(6): 360-362. doi: 10.1364/OL.22.000360
    [32] Shin Y S. Improvement of spatial beam profiles in beam combination using SBS mirrors[C]//Proceedings of the SPIE 2778, 17th Congress of the International Commission for Optics: Optics for Science and New Technology. 1996: 2778BL.
    [33] Kong H J, Lee J Y, Shin Y S, et al. Beam recombination characteristics in array laser amplification using stimulated Brillouin scattering phase conjugation[J]. Optical Review, 1997, 4(2): 277-283. doi: 10.1007/s10043-997-0277-9
    [34] Kong H J, Shin Y S, Kim H. Beam combination characteristics in an array laser using stimulated Brillouin scattering phase conjugate mirrors considering partial coherency between the beams[J]. Fusion Engineering and Design, 1999, 44(1/4): 407-417.
    [35] Lee S K, Lee D W, Baek D H, et al. Independent phase control of Stokes waves for beam combination[C]//Proceedings of the SPIE 5627, High-Power Lasers and Applications III. 2004: 128-135.
    [36] Kong H J, Lee S K, Lee D W, et al. Phase control of a stimulated Brillouin scattering phase conjugate mirror by a self-generated density modulation[J]. Applied Physics Letters, 2005, 86: 051111. doi: 10.1063/1.1857088
    [37] Kong H J, Yoon J W, Shin J S, et al. Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors[J]. Applied Physics Letters, 2008, 92: 021120. doi: 10.1063/1.2831659
    [38] Shin J S, Park S, Kong H J, et al. Phase stabilization of a wave-front dividing four-beam combined amplifier with stimulated Brillouin scattering phase conjugate mirrors[J]. Applied Physics Letters, 2010, 96: 131116. doi: 10.1063/1.3373629
    [39] Kong H J, Park S, Cha S, et al. 0.4 J/10 ns/10 kHz-4 kW coherent beam combined laser using stimulated Brillouin scattering phase conjugation mirrors for industrial applications[J]. Physica Status Solidi (C), 2013, 10(6): 962-966. doi: 10.1002/pssc.201300013
    [40] Brignon A. Coherent laser beam combining[M]. Wiley-VCH, 2013: 456-457.
    [41] Bowers M W, Boyd R W. Phase locking via Brillouin-enhanced four-wave-mixing phase conjugation[J]. IEEE Journal of Quantum Electronics, 1998, 34(4): 634-644. doi: 10.1109/3.663441
    [42] Dane C B, Hackel L A. High-average-power, high-brightness Nd: glass laser technology[R]. California: Lawrence Livermore National Laboratory, 1997: 239-245.
    [43] Yoshida H, Nakatsuka M, Hatae T, et al. Two-beam-combined 7.4 J, 50 Hz Q-switch pulsed YAG laser system based on SBS phase conjugation mirror for plasma diagnostics[J]. Japanese Journal of Applied Physics, 2004, 43(8A): L1038-L1040. doi: 10.1143/JJAP.43.L1038
    [44] Trines R M G M, Alves E P, Webb E, et al. New criteria for efficient Raman and Brillouin amplification of laser beams in plasma[J]. Scientific Reports, 2020, 10: 19875. doi: 10.1038/s41598-020-76801-z
    [45] Trines R M G M, Fiúza F, Bingham R, et al. Simulations of efficient Raman amplification into the multipetawatt regime[J]. Nature Physics, 2011, 7(1): 87-92. doi: 10.1038/nphys1793
    [46] Malkin V M, Shvets G, Fisch N J. Fast compression of laser beams to highly overcritical powers[J]. Physical Review Letters, 1999, 82(22): 4448-4451. doi: 10.1103/PhysRevLett.82.4448
    [47] Wharton K B, Kirkwood R K, Glenzer S H, et al. Observation of energy transfer between identical-frequency laser beams in a flowing plasma[J]. Physical Review Letters, 1998, 81(11): 2248-2251. doi: 10.1103/PhysRevLett.81.2248
    [48] Cohen B I, Lasinski B F, Langdon A B, et al. Resonant stimulated Brillouin interaction of opposed laser beams in a drifting plasma[J]. Physics of Plasmas, 1998, 5(9): 3408-3415. doi: 10.1063/1.873055
    [49] Kruer W L, Wilks S C, Afeyan B B, et al. Energy transfer between crossing laser beams[J]. Physics of Plasmas, 1996, 3(1): 382-385. doi: 10.1063/1.871863
    [50] Kirkwood R K, Afeyan B B, Kruer W L, et al. Observation of energy transfer between frequency-mismatched laser beams in a large-scale plasma[J]. Physical Review Letters, 1996, 76(12): 2065-2068. doi: 10.1103/PhysRevLett.76.2065
    [51] Kirkwood R K, Williams E A, Cohen B I, et al. Saturation of power transfer between two copropagating laser beams by ion-wave scattering in a single-species plasma[J]. Physics of Plasmas, 2005, 12: 112701. doi: 10.1063/1.2124508
    [52] Seka W, Baldis H A, Fuchs J, et al. Multibeam stimulated Brillouin scattering from hot, solid-target plasmas[J]. Physical Review Letters, 2002, 89: 175002. doi: 10.1103/PhysRevLett.89.175002
    [53] Kirkwood R K, Michel P, London R A, et al. Amplification of light in a plasma by stimulated ion acoustic waves driven by multiple crossing pump beams[J]. Physical Review E, 2011, 84: 026402. doi: 10.1103/PhysRevE.84.026402
    [54] Kirkwood R K, Michel P, London R, et al. Multi-beam effects on backscatter and its saturation in experiments with conditions relevant to ignition[J]. Physics of Plasmas, 2011, 18: 056311. doi: 10.1063/1.3587122
    [55] Kirkwood R K, MacGowan B J, Montgomery D S, et al. Effect of ion-wave damping on stimulated Raman scattering in high-Z laser-produced plasmas[J]. Physical Review Letters, 1996, 77(13): 2706-2709. doi: 10.1103/PhysRevLett.77.2706
    [56] Kirkwood R K, Turnbull D P, Chapman T, et al. Plasma-based beam combiner for very high fluence and energy[J]. Nature Physics, 2017, 14(1): 80-84.
    [57] Kirkwood R K, Turnbull D P, Chapman T, et al. A plasma amplifier to combine multiple beams at NIF[J]. Physics of Plasmas, 2018, 25: 056701. doi: 10.1063/1.5016310
    [58] Kirkwood R K, Poole P L, Kalantar D H, et al. Production of high fluence laser beams using ion wave plasma optics[J]. Applied Physics Letters, 2022, 120: 200501. doi: 10.1063/5.0086068
    [59] Poole P L, Kirkwood R K, Wilks S C, et al. Time-resolved measurement of power transfer in plasma amplifier experiments on NIF[C]//Proceedings of the 2021 Conference on Lasers and Electro-Optics. 2021: 1-2.
    [60] Peng H, Wu Z H, Zuo Y L, et al. Strongly coupled stimulated Brillouin amplification in pump-ionizing plasma[J]. Laser Physics Letters, 2018, 15: 026003. doi: 10.1088/1612-202X/aa9aa4
    [61] Jia Xiaobao, Jia Qing, Xiao Jianyuan, et al. Explicit high-order symplectic integrators of coupled Schrodinger equations for pump-probe systems[DB/OL]. arXiv preprint arXiv: 2208.13120, 2022.
    [62] 张锐, 周丹丹, 田小程, 等. 高功率激光装置实现CBET研究所需的四色光输出[J]. 强激光与粒子束, 2023, 35:029901 doi: 10.11884/HPLPB202335.220381

    Zhang Rui, Zhou Dandan, Tian Xiaocheng, et al. Four-color laser for crossed-beam energy transfer research realized on high power laser facility[J]. High Power Laser and Particle Beams, 2023, 35: 029901 doi: 10.11884/HPLPB202335.220381
    [63] 白振旭, 杨学宗, 陈晖, 等. 高功率金刚石激光技术研究进展(特邀)[J]. 红外与激光工程, 2020, 49:20201076 doi: 10.3788/IRLA20201076

    Bai Zhenxu, Yang Xuezong, Chen Hui, et al. Research progress of high-power diamond laser technology (invited)[J]. Infrared and Laser Engineering, 2020, 49: 20201076 doi: 10.3788/IRLA20201076
    [64] McKay A, Spence D J, Coutts D W, et al. Non-collinear beam combining of kilowatt beams in a diamond Raman amplifier[C]//Proceedings of the Advanced Solid State Lasers. 2014: ATu5A. 1.
    [65] McKay A, Mildren R P, Coutts D W, et al. SRS in the strong-focusing regime for Raman amplifiers[J]. Optics Express, 2015, 23(11): 15012-15020. doi: 10.1364/OE.23.015012
    [66] McKay A, Spence D J, Coutts D W, et al. Diamond-based concept for combining beams at very high average powers[J]. Laser & Photonics Reviews, 2017, 11: 1600130.
    [67] 丁迎春, 吕志伟, 何伟明. 受激布里渊散射相位共轭激光组束规律[J]. 强激光与粒子束, 2002, 14(3):353-356

    Ding Yingchun, Lv Zhiwei, He Weiming. Study of beam combination by stimulated Brillouin scattering[J]. High Power Laser and Particle Beams, 2002, 14(3): 353-356
    [68] Guo Qi, Lu Zhiwei, Wang Yulei. Highly efficient Brillouin amplification of strong Stokes seed[J]. Applied Physics Letters, 2010, 96: 221107. doi: 10.1063/1.3435385
    [69] 郭琦. 受激布里渊散射组束激光器研究[D]. 哈尔滨: 哈尔滨工业大学, 2010

    Guo Qi. Research on stimulated Brillouin scattering beam combination laser[D]. Harbin: Harbin Institute of Technology, 2010
    [70] 王双义. 基于布里渊放大的激光串行组束中若干关键问题研究[D]. 哈尔滨: 哈尔滨工业大学, 2008

    Wang Shuangyi. Investigation of some key problems in serial laser beam combination based on Brillouin amplification[D]. Harbin: Harbin Institute of Technology, 2008
    [71] 王双义, 林殿阳, 吕志伟, 等. 对受激布里渊散射激光进行组束的数值模拟及方案设计[J]. 强激光与粒子束, 2003, 15(9):877-880

    Wang Shuangyi, Lin Dianyang, Lv Zhiwei, et al. Numerical simulation and scheme design for laser beam combination of stimulated Brillouin scattering[J]. High Power Laser and Particle Beams, 2003, 15(9): 877-880
    [72] 安习文. 交叉泵浦布里渊放大系统增益特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2013

    An Xiwen. Investigation of gain properities of non-collinear Brillouin amplification system[D]. Harbin: Harbin Institute of Technology, 2013
    [73] Chen Yi, Lu Zhiwei, Wang Yulei, et al. Phase matching for noncollinear Brillouin amplification based on controlling of frequency shift of stokes seed[J]. Optics Letters, 2014, 39(10): 3047-3049. doi: 10.1364/OL.39.003047
    [74] Yuan Hang, Wang Yulei, Yuan Qiang, et al. Amplification of 200-ps high-intensity laser pulses via frequency matching stimulated Brillouin scattering[J]. High Power Laser Science and Engineering, 2019, 7: e41. doi: 10.1017/hpl.2019.31
    [75] Yuan Hang, Wang Yulei, Lu Zhiwei, et al. Active frequency matching in stimulated Brillouin amplification for production of a 2.4 J, 200 ps laser pulse[J]. Optics Letters, 2018, 43(3): 511-514. doi: 10.1364/OL.43.000511
    [76] Cui Can, Wang Yulei, Lu Zhiwei, et al. Joule-level 10 Hz non-collinear multi-pump SBS amplifier with high energy extraction efficiency used for laser beams combination[C]//Proceedings of the Conference on Lasers and Electro-Optics. 2019: JTu2A. 59.
    [77] Cui Can, Wang Yulei, Lu Zhiwei, et al. Demonstration of 2.5 J, 10 Hz, nanosecond laser beam combination system based on non-collinear Brillouin amplification[J]. Optics Express, 2018, 26(25): 32717-32727. doi: 10.1364/OE.26.032717
    [78] 张小民, 胡东霞, 许党朋, 等. 浅论强激光系统的物理受限问题[J]. 中国激光, 2021, 48:1201002 doi: 10.3788/CJL202148.1201002

    Zhang Xiaomin, Hu Dongxia, Xu Dangpeng, et al. Physical limitations of high-power, high-energy lasers[J]. Chinese Journal of Lasers, 2021, 48: 1201002 doi: 10.3788/CJL202148.1201002
    [79] Banerjee S, Mason P, Phillips J, et al. Pushing the boundaries of diode-pumped solid-state lasers for high-energy applications[J]. High Power Laser Science and Engineering, 2020, 8: e20. doi: 10.1017/hpl.2020.20
    [80] De Vido M, Mason P D, Ertel K, et al. The first kilowatt average power 100J-level DPSSL[C]//Proceedings of the 2017 IEEE High Power Diode Lasers and Systems Conference (HPD). 2017: 19-20.
    [81] Divoky M, Sikocinski P, Pilar J, et al. Design of high-energy-class cryogenically cooled Yb3+∶YAG multislab laser system with low wavefront distortion[J]. Optical Engineering, 2013, 52: 064201. doi: 10.1117/1.OE.52.6.064201
    [82] Kong H J, Park S, Cha S, et al. Coherent beam combination laser system using SBS-PCM for high repetition rate solid-state lasers[J]. Optical Materials, 2013, 35(4): 807-811. doi: 10.1016/j.optmat.2012.09.042
    [83] Bai Zhenxu, Yuan Hang, Liu Zhaohong, et al. Stimulated Brillouin scattering materials, experimental design and applications: a review[J]. Optical Materials, 2018, 75: 626-645. doi: 10.1016/j.optmat.2017.10.035
    [84] Wang Yue, Cui Can, Lu Zhiwei, et al. Beam spatial intensity modification based on stimulated Brillouin amplification[J]. Optics Express, 2022, 30(20): 35792-35806. doi: 10.1364/OE.462032
  • 加载中
图(13)
计量
  • 文章访问数:  599
  • HTML全文浏览量:  235
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-02
  • 修回日期:  2023-03-23
  • 录用日期:  2023-03-29
  • 网络出版日期:  2023-03-30
  • 刊出日期:  2023-03-30

目录

    /

    返回文章
    返回