留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环形正负电子对撞机注入引出分布参数型冲击磁铁设计

吴官健 王磊 王冠文 史晓蕾 翟心哲 陈锦晖

吴官健, 王磊, 王冠文, 等. 环形正负电子对撞机注入引出分布参数型冲击磁铁设计[J]. 强激光与粒子束, 2023, 35: 054002. doi: 10.11884/HPLPB202335.220364
引用本文: 吴官健, 王磊, 王冠文, 等. 环形正负电子对撞机注入引出分布参数型冲击磁铁设计[J]. 强激光与粒子束, 2023, 35: 054002. doi: 10.11884/HPLPB202335.220364
Wu Guanjian, Wang Lei, Wang Guanwen, et al. Design of injection and extraction delay-line kicker magnet for circular electron-positron collider[J]. High Power Laser and Particle Beams, 2023, 35: 054002. doi: 10.11884/HPLPB202335.220364
Citation: Wu Guanjian, Wang Lei, Wang Guanwen, et al. Design of injection and extraction delay-line kicker magnet for circular electron-positron collider[J]. High Power Laser and Particle Beams, 2023, 35: 054002. doi: 10.11884/HPLPB202335.220364

环形正负电子对撞机注入引出分布参数型冲击磁铁设计

doi: 10.11884/HPLPB202335.220364
基金项目: 国家自然科学基金项目 (11675194)
详细信息
    作者简介:

    吴官健,wuguanjian@ihep.ac.cn

    通讯作者:

    陈锦晖, chenjh@ihep.ac.cn

  • 中图分类号: TL503.3

Design of injection and extraction delay-line kicker magnet for circular electron-positron collider

  • 摘要: 环形正负电子对撞机(CEPC)是一台周长100 km,最高能量为120 GeV的双环对撞机。为了满足不同能量粒子从增强器注入到对撞环,针对W和Z能量模式设计了对撞环离轴注入系统,用于实现束流的累积。为了提高注入效率,兼容不同注入能量,不同束流填充模式,同时尽可能减少注入过程中冲击磁铁对其它束团的扰动,要求对撞环离轴注入冲击磁铁系统是一个上升时间和下降时间小于200 ns,脉冲底宽调节范围为440~2420 ns的梯形波脉冲放电系统。和常见的集中参数型冲击磁铁相比,分布参数型冲击磁铁具有更优越的动态响应特性,适合产生一个前沿更加陡峭、波形更为理想的梯形波脉冲。根据CEPC的束流注入物理需求,完成了一台分布参数型冲击磁铁的物理设计和结构设计,并采用了PSpice和Opera程序进行模拟仿真。设计结果表明:冲击磁铁由26级LC单元结构叠装而成,磁铁总长为1018 mm,磁有效长度为942 mm;在[−20,20] mm磁铁孔径内,磁场强度为0.042 1 T,磁场均匀性优于±0.2%;冲击磁铁系统总上升时间(10%~90%)为193 ns,下降时间(90%~10%)为191 ns。理论分析、PSpice程序和Opera程序模拟均验证了磁铁设计方案的可行性。
  • 图  1  梯形波冲击磁铁系统

    Figure  1.  Trapezoidal wave kicker system

    图  2  分布参数型冲击磁铁基本单元

    Figure  2.  Delay-line kicker base unit

    图  3  分布参数型冲击磁铁简化等效电路

    Figure  3.  Simplified equivalent electric circuit of a delay-line kicker

    图  4  陶瓷真空盒

    Figure  4.  Ceramic vacuum chamber

    图  5  陶瓷真空盒横截面

    Figure  5.  Cross section of ceramic vacuum chamber

    图  6  冲击磁铁横截面

    Figure  6.  Cross section of designed kicker

    图  7  冲击磁铁三维模型

    Figure  7.  3D model of designed kicker

    图  8  电容极板重叠面积(空气作为介质)

    Figure  8.  Overlapping area of capacitor plates (air as medium)

    图  9  三明治电容结构

    Figure  9.  Sandwich capacitor structure

    图  10  电容极板重叠面积(陶瓷作为介质)

    Figure  10.  Overlapping area of capacitor plates (ceramic as medium)

    图  11  分布参数型冲击磁铁Opera 2D模型

    Figure  11.  Opera 2D model of delay-line kicker

    图  12  x轴向磁场分布

    Figure  12.  Magnetic field distribution along x-axis

    图  13  中心区域磁场分布

    Figure  13.  Magnetic field distribution of central region

    图  14  分布参数型冲击磁铁系统电路模型

    Figure  14.  Electric circuit model of delay-line kicker system

    图  15  磁场脉冲时间分布

    Figure  15.  Time distribution of magnetic field pulse

    表  1  CEPC对撞环离轴注入冲击磁铁系统设计物理要求

    Table  1.   Physical requirements of CEPC off-axis injection kicker system

    repetition
    rate/Hz
    pulse
    width/ns
    flat
    top/ns
    rise (fall)
    time/ns
    kick
    angle/mrad
    integral field
    strength/(T·m)
    beam pipe
    aperture
    1000 440~2420
    (adjustable)
    0~1980
    (adjustable)
    <220 0.1 0.04 75 mm×56 mm
    下载: 导出CSV

    表  2  镍锌铁氧体性能参数

    Table  2.   Performance parameters of Ni-Zn ferrite

    initial
    permeability
    saturation flux
    density/mT
    residual flux
    density/mT
    coercive
    force/(A· $ {\mathrm{m}}^{-1} $)
    density/
    (g· $ {\mathrm{c}\mathrm{m}}^{-3} $)
    Curie
    temperature/℃
    2100 330 130 9.5 5.27 130
    下载: 导出CSV

    表  3  典型的MOSFET和IGBT开关参数

    Table  3.   Typical MOSFET and IGBT switching parameters

    type Vbr/V Td(on)/ns Tr/ns Td(off) /ns Tf/ns
    MOSFET 1700 65 20 48 18
    IGBT 1200 10 60 530 30
    下载: 导出CSV
  • [1] The CEPC Study Group. CEPC conceptual design report[R]. Beijing: Institute of High Energy Physics (IHEP), 2018.
    [2] Ducimetiere L, Garrel N, Barnes M J, et al. The LHC injection kicker magnet[C]//Proceedings of the 2003 Particle Accelerator Conference. 2003: 1162-1164.
    [3] Frick E, Kühn H, Mayer M, et al. Fast pulsed magnet systems for proton and antiproton injection into the CERN 400 GeV proton synchrotron[C]//Proceedings of the 15th Power Modulator Symposium. 1982: 290-298.
    [4] Ueda A, Ushiku T, Mitsuhashi T. Construction of travelling wave kicker magnet and pulse power supply for the KEK-Photon factory storage ring[C]//Proceedings of the 2001 Particle Accelerator Conference. 2001: 4050-4052.
    [5] Jensen C, Hanna B, Reilly R. A fast injection kicker magnet for the Tevatron[C]//Proceedings of the 2001 Particle Accelerator Conference. 2001: 3720-3722.
    [6] Jensen C, Reilly R, Hanna B. A fast injection kicker system for the Tevatron[C]//Proceedings of the 2001 Particle Accelerator Conference. 2001: 3723-3725.
    [7] Barnes M J, Ducimetière L, Fowler T, et al. Injection and extraction magnets: kicker magnets[C]//Proceedings of the CERN Accelerator School CAS 2009: Specialised Course on Magnets. 2009: 141-166.
    [8] 高杰, 李煜辉, 翟纪元. 高能粒子加速器关键技术[M]. 上海: 上海交通大学出版社, 2021: 194-197

    Gao Jie, Li Yuhui, Zhai Jiyuan. Key technologies of high energy particle accelerators[M]. Shanghai: Shanghai Jiao Tong University Press, 2021: 194-197
    [9] 张洪涛, 董海义, 杨奇. CSNS/RCS二极陶瓷真空盒磁控溅射镀TiN薄膜研究进展[J]. 真空, 2014, 51(4):61-64 doi: 10.13385/j.cnki.vacuum.2014.04.006

    Zhang Hongtao, Dong Haiyi, Yang Qi. Development of titanium nitride coating for the CSNS/RCS dipole ceramic vacuum chambers by DC magnetron sputtering[J]. Vacuum, 2014, 51(4): 61-64 doi: 10.13385/j.cnki.vacuum.2014.04.006
    [10] 王磊, 康文, 郝耀斗, 等. CSNS\RCS引出系统快脉冲冲击磁铁样机的设计[J]. 强激光与粒子束, 2009, 21(8):1263-1266

    Wang Lei, Kang Wen, Hao Yaodou, et al. Fast kicker magnet prototype for CSNS\RCS extraction system[J]. High Power Laser and Particle Beams, 2009, 21(8): 1263-1266
    [11] Dinkel J, Hanna B, Jensen C, et al. Development of a high quality kicker magnet system[C]//Proceedings of International Conference on Particle Accelerators. 1993: 1357-1359.
    [12] 赵籍九, 尹兆升. 粒子加速器技术[M]. 北京: 高等教育出版社, 2006: 298-299

    Zhao Jijiu, Yin Zhaosheng. Particle accelerator technology[M]. Beijing: Higher Education Press, 2006: 298-299
    [13] Stange G. A new delay-line kicker with capacitive loading sandwiches[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1991, 300(3): 425-430.
    [14] Fiander D C, Metzmacher K D, Pearce P. Kickers and septa at the PS complex, CERN[C]//Proceedings of the KAON PDS Magnet Design Workshop. 1988: 71-86.
    [15] Schröder G. Fast pulsed magnet systems[M]//Chao A W, Tigner M. Handbook of Accelerator Physics and Engineering. Singapore: World Scientific Press, 1999: 460-466.
    [16] Forsyth E B, Fruitman M. Fast kickers[J]. Particle Accelerators, 1970, 1: 27-39.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  480
  • HTML全文浏览量:  160
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-29
  • 修回日期:  2023-02-14
  • 录用日期:  2023-02-14
  • 网络出版日期:  2023-02-21
  • 刊出日期:  2023-04-07

目录

    /

    返回文章
    返回