留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光纤激光倍频的高功率绿光光源研究进展

马天 李富全 林宏奂

马天, 李富全, 林宏奂. 基于光纤激光倍频的高功率绿光光源研究进展[J]. 强激光与粒子束, 2023, 35: 071005. doi: 10.11884/HPLPB202335.220367
引用本文: 马天, 李富全, 林宏奂. 基于光纤激光倍频的高功率绿光光源研究进展[J]. 强激光与粒子束, 2023, 35: 071005. doi: 10.11884/HPLPB202335.220367
Ma Tian, Li Fuquan, Lin Honghuan. Recent progress of high power green laser based on frequency doubling technology for fiber laser[J]. High Power Laser and Particle Beams, 2023, 35: 071005. doi: 10.11884/HPLPB202335.220367
Citation: Ma Tian, Li Fuquan, Lin Honghuan. Recent progress of high power green laser based on frequency doubling technology for fiber laser[J]. High Power Laser and Particle Beams, 2023, 35: 071005. doi: 10.11884/HPLPB202335.220367

基于光纤激光倍频的高功率绿光光源研究进展

doi: 10.11884/HPLPB202335.220367
详细信息
    作者简介:

    马 天,18383810670@139.com

  • 中图分类号: O439

Recent progress of high power green laser based on frequency doubling technology for fiber laser

  • 摘要:

    详细调研了近年来基于光纤激光倍频的高功率绿光光源的研究进展,绿光激光功率从百瓦到千瓦,光束质量近衍射极限,而且输出功率有望进一步提升。采用光纤激光倍频技术得到高功率绿光光源的技术路线大致分为两条:一条是用高功率单子束光纤激光器作为基频光源,然后级联单程非临界相位匹配LBO晶体作为倍频;另一条是用多子束光纤激光器作为基频光源,然后合成与倍频分别实现,或者合成与倍频一体实现。对比两条技术路线,前者相对后者简单,后者具有更高输出功率的潜力,但是倍频晶体的弱吸收是两条技术路线共同面临的问题。

  • 图  1  美国IPG公司基于线偏振窄线宽光纤激光器的绿光光源光路图

    Figure  1.  The schematic of experimental green laser based on narrow linewidth fiber laser of IPG photonics

    图  2  美国相干公司基于非保偏光纤激光器结合主动偏振控制技术的绿光光源光路图

    Figure  2.  The schematic of green laser based on non-polarization-maintaining narrow linewidth fiber laser with polarization controller of Coherent

    图  3  上海光机所基于窄线宽保偏激光器的绿光光源光路图

    Figure  3.  Schematic of green laser based on narrow linewidth fiber laser of Shanghai Institute of Optics and Fine Mechanics

    图  4  大阪大学基于高功率纳秒级脉冲光纤激光器获得绿光和紫外光的系统光路图

    Figure  4.  Schematic for obtaining green laser and ultraviolet laser based on high power nanosecond pulsed fiber laser of Osaka University

    图  5  立陶宛EKSPLA公司在欧洲专利中提出的倍频合束方案

    Figure  5.  Frequency doubling beam combining scheme proposed by EKSPLA of Lithuania in European Patent

    图  6  立陶宛物理科学与技术中心基于倍频合束非相干方案的四路合束实验光路图

    Figure  6.  Schematic of four fiber lasers beam combining based on incoherent scheme by Center for Physical Sciences and Technology of Lithuania

    图  7  立陶宛物理科学与技术中心基于倍频合束相干方案的四路合束实验装置图

    Figure  7.  Schematic of four fiber lasers beam combining based on coherent scheme by Center for Physical Sciences and Technology of Lithuania

    图  8  晶体厚度40 mm/60 mm时输出绿光功率与基频光功率关系曲线

    Figure  8.  Relation curves of output green light power and fundamental light power when the thickness of crystal is 40 mm and 60 mm

    图  9  Ⅱ型LBO晶体的相位匹配圆和18束子束在匹配圆上的排布示意图

    Figure  9.  Phase matching circle of type II LBO crystal and layout diagram of 18 sub-beams

  • [1] Uraoka Y, Kawamura Y, Yamasaki K, et al. Crystallization by green-laser annealing for three-dimensional device application[J]. Journal of the Korean Physical Society, 2010, 56(5): 1456-1460. doi: 10.3938/jkps.56.1456
    [2] Hay N, Baker I, Guo Yili, et al. Stability-enhanced, high-average power green lasers for precision semiconductor processing[C]//Proceedings of SPIE 8235, Solid State Lasers XXI: Technology and Devices. 2012: 82351E.
    [3] Chellappan K V, Erden E, Urey H. Laser-based displays: a review[J]. Applied Optics, 2010, 49(25): F79-F98. doi: 10.1364/AO.49.000F79
    [4] 周朴, 冷进勇, 肖虎, 等. 高平均功率光纤激光的研究进展与发展趋势[J]. 中国激光, 2021, 48:2000001 doi: 10.3788/CJL202148.2000001

    Zhou Pu, Leng Jinyong, Xiao Hu, et al. High average power fiber lasers: research progress and future prospect[J]. Chinese Journal of Lasers, 2021, 48: 2000001 doi: 10.3788/CJL202148.2000001
    [5] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241. doi: 10.1109/JSTQE.2014.2321279
    [6] Shiner B. The impact of fiber laser technology on the world wide material processing market[C]//CLEO: Science and Innovations 2013. 2013: AF2J. 1.
    [7] Lin Honghuan, Xu Lixin, Li Chengyu, et al. 10.6 kW high-brightness cascade-end-pumped monolithic fiber lasers directly pumped by laser diodes in step-index large mode area double cladding fiber[J]. Results in Physics, 2019, 14: 102479. doi: 10.1016/j.rinp.2019.102479
    [8] Gapontsev V, Avdokhin A, Kadwani P, et al. SM green fiber laser operating in CW and QCW regimes and producing over 550W of average output power[C]//Proceedings of SPIE 8964, Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XIII. 2014: 896407.
    [9] Avdokhin A, Gapontsev V, Kadwani P, et al. High average power quasi-CW single-mode green and UV fiber lasers[C]//Proceedings of SPIE 9347, Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XIV. 2015: 934704.
    [10] Ahmadi P, Creeden D, Aschaffenburg D, et al. Generating kW laser light at 532 nm via second harmonic generation of a high power Yb-doped fiber amplifier[C]//Proceedings of SPIE 11264, Nonlinear Frequency Generation and Conversion: Materials and Devices XIX. 2020: 1126414.
    [11] Su Mengqi, You Yang, Quan Zhao, et al. 321 W high-efficiency continuous-wave green laser produced by single-pass frequency doubling of a narrow-linewidth fiber laser[J]. Applied Optics, 2021, 60(13): 3836-3841. doi: 10.1364/AO.422514
    [12] 苏梦琪, 尤阳, 全昭, 等. 高效率单通倍频实现610W连续波单模绿光输出[J]. 中国激光, 2021, 48:1315002 doi: 10.3788/CJL202148.1315002

    Su Mengqi, You Yang, Quan Zhao, et al. 610-W continuous-wave single-mode green laser output based on highly efficient single-pass frequency doubling[J]. Chinese Journal of Lasers, 2021, 48: 1315002 doi: 10.3788/CJL202148.1315002
    [13] Tsubakimoto K, Yoshida H, Miyanaga N. 600 W green and 300 W UV light generated from an eight-beam, sub-nanosecond fiber laser system[J]. Optics Letters, 2017, 42(17): 3255-3258. doi: 10.1364/OL.42.003255
    [14] Michailovas A, Mikalauskas S, Regelskis K, et al. Method and device for combining laser beams: 2194426[P]. 2016-03-23.
    [15] Želudevičius J, Regelskis K, Račiukaitis G. Experimental demonstration of pulse multiplexing and beam combining of four fiber lasers by noncollinear frequency conversion in an LBO crystal[J]. Optics Letters, 2017, 42(2): 175-178. doi: 10.1364/OL.42.000175
    [16] Želudevičius J, Rutkauskas R, Regelskis K. Coherent beam combining of pulsed fiber amplifiers by noncolinear sum-frequency generation[J]. Optics Letters, 2019, 44(7): 1813-1816. doi: 10.1364/OL.44.001813
    [17] Dmitriev V G, Gurzadyan G G, Nikogosyan D N. Handbook of nonlinear optical crystals[M]. Berlin, Heidelberg: Springer, 1991.
    [18] Avdokhin A V, Gapontsev V P, Grapov Y S. 170W continuous-wave single-frequency single-mode green fiber laser[C]//Proceedings of SPIE 8237, Fiber Lasers IX: Technology, Systems, and Applications. 2012.
    [19] Carrion L, Girardeau-Montaut J P. Gray-track damage in potassium titanyl phosphate under a picosecond regime at 532 nm[J]. Applied Physics Letters, 2000, 77(8): 1074-1076. doi: 10.1063/1.1289501
    [20] Alexandrovski A L, Foulon G, Myers L E, et al. UV and visible absorption in LiTaO3[C]//Proceedings of SPIE 3610, Laser Material Crystal Growth and Nonlinear Materials and Devices. 1999: 44-51.
    [21] 李小矛. 非线性光学晶体弱吸收及激光损伤研究[D]. 北京: 中国科学院理化技术研究所, 2013

    Li Xiaomao. Research on the weak absorption and laser-induced damage of nonlinear optical crystals[D]. Beijing: Technical Institute of Physics and Chemistry, CAS, 2013
    [22] Mühlig C. Direct and absolute absorption measurements in optical materials and coatings by laser induced deflection (LID) technique[C]//Proceedings of SPIE 8206, Pacific Rim Laser Damage 2011: Optical Materials for High Power Lasers. 2012: 82061I.
  • 加载中
图(9)
计量
  • 文章访问数:  775
  • HTML全文浏览量:  270
  • PDF下载量:  219
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-01
  • 修回日期:  2023-02-27
  • 录用日期:  2023-01-09
  • 网络出版日期:  2023-04-01
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回