留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光脉冲和电子束对撞准确度的测量方法

张子谦 李炳均 李彦霏

张子谦, 李炳均, 李彦霏. 激光脉冲和电子束对撞准确度的测量方法[J]. 强激光与粒子束, 2023, 35: 012008. doi: 10.11884/HPLPB202335.220375
引用本文: 张子谦, 李炳均, 李彦霏. 激光脉冲和电子束对撞准确度的测量方法[J]. 强激光与粒子束, 2023, 35: 012008. doi: 10.11884/HPLPB202335.220375
Zhang Ziqian, Li Bingjun, Li Yanfei. Detection method of accuracy of laser-electron-beam interaction[J]. High Power Laser and Particle Beams, 2023, 35: 012008. doi: 10.11884/HPLPB202335.220375
Citation: Zhang Ziqian, Li Bingjun, Li Yanfei. Detection method of accuracy of laser-electron-beam interaction[J]. High Power Laser and Particle Beams, 2023, 35: 012008. doi: 10.11884/HPLPB202335.220375

激光脉冲和电子束对撞准确度的测量方法

doi: 10.11884/HPLPB202335.220375
基金项目: 国家自然科学基金项目(12075187, 12222507); 中国科学院战略重点研究项目(XDA25031000)
详细信息
    作者简介:

    张子谦,2194214343@stu.xjtu.edu.cn

    通讯作者:

    李彦霏,liyanfei@xjtu.edu.cn

  • 中图分类号: O536

Detection method of accuracy of laser-electron-beam interaction

  • 摘要: 超强激光脉冲与相对论电子束相互对撞是当前主要的强场量子电动力学(QED)实验手段。如何测量超强激光脉冲和电子束对撞的准确度,进而实现微米精度的准确对撞,是目前限制实验发展的重要因素。利用蒙特卡罗数值模拟方法,系统研究了超强激光脉冲和相对论电子束相互对撞过程,重点关注了电子和辐射光子动力学信息与激光脉冲和电子束对撞偏移量之间的对应关系。研究发现:辐射光子的空间分布信息,可以有效反映出激光脉冲和电子束的对撞偏移量。基于该研究结果,实验中可利用光子空间分布的信息,实现对激光脉冲和电子束对撞准确度的调节,从而有望促进强场QED实验技术的发展。
  • 图  1  辐射光子能量在横向偏折角空间分布

    Figure  1.  Distribution of emitted photon energy with respect to transverse deflection angles

    图  2  光子分布信息与对撞偏差间的联系

    Figure  2.  Connection between emitted photon distribution and collision offset

    图  3  激光强度和电子束能量的影响

    Figure  3.  Impact of laser intensity and initial electron energy

    图  4  激光脉冲长度和束腰半径条件的影响

    Figure  4.  Impact of laser duration and fucus radius

  • [1] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494. doi: 10.1038/187493a0
    [2] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221. doi: 10.1016/0030-4018(85)90120-8
    [3] 张杰. 强场物理——一门崭新的学科[J]. 物理, 1997, 26(11):643-649

    Zhang Jie. A new horizon high field physics[J]. Physics, 1997, 26(11): 643-649
    [4] Yoon J W, Kim Y G, Choi I W, et al. Realization of laser intensity over 1023 W/cm2[J]. Optica, 2021, 8(5): 630-635. doi: 10.1364/OPTICA.420520
    [5] 龚驰, 李子良, 李英骏. 强场下真空中粒子对产生的研究进展[J]. 强激光与粒子束, 2023, 35:012002 doi: 10.11884/HPLPB202335.220145

    Gong Chi, Li Ziliang, Li Yingjun. Progress of pair production from vacuum in strong laser fields[J]. High Power Laser and Particle Beams, 2023, 35: 012002 doi: 10.11884/HPLPB202335.220145
    [6] Schwinger J. On gauge invariance and vacuum polarization[J]. Physical Review Journals Archive, 1951, 82: 664.
    [7] Di Piazza A, Müller C, Hatsagortsyan K Z, et al. Extremely high-intensity laser interactions with fundamental quantum systems[J]. Reviews of Modern Physics, 2012, 84(3): 1177-1228. doi: 10.1103/RevModPhys.84.1177
    [8] Gonoskov A, Blackburn T G, Marklund M, et al. Charged particle motion and radiation in strong electromagnetic fields[J]. Reviews of Modern Physics, 2022, 94: 045001. doi: 10.1103/RevModPhys.94.045001
    [9] Cole J M, Behm K T, Gerstmayr E, et al. Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam[J]. Physical Review X, 2018, 8: 011020.
    [10] Poder K, Tamburini M, Sarri G, et al. Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser[J]. Physical Review X, 2018, 8: 031004.
    [11] Tamburini M. On-shot diagnostic of electron beam-laser pulse interaction based on stochastic quantum radiation reaction[DB/OL]. arXiv preprint arXiv: 2007.02841, 2020.
    [12] Li Yanfei, Zhao Yongtao, Hatsagortsyan K Z, et al. Electron-angular-distribution reshaping in the quantum radiation-dominated regime[J]. Physical Review A, 2018, 98: 052120. doi: 10.1103/PhysRevA.98.052120
    [13] Li Yanfei, Shaisultanov R, Hatsagortsyan K Z, et al. Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse[J]. Physical Review Letters, 2019, 122: 154801. doi: 10.1103/PhysRevLett.122.154801
    [14] Li Yanfei, Chen Yueyue, Wang Weimin, et al. Production of highly polarized positron beams via helicity transfer from polarized electrons in a strong laser field[J]. Physical Review Letters, 2020, 125: 044802. doi: 10.1103/PhysRevLett.125.044802
    [15] Li Yanfei, Chen Yueyue, Hatsagortsyan K Z, et al. Helicity transfer in strong laser fields via the electron anomalous magnetic moment[J]. Physical Review Letters, 2022, 128: 174801. doi: 10.1103/PhysRevLett.128.174801
    [16] Baier V N, Katkov V M, Strakhovenko V M. Electromagnetic processes at high energies in oriented single crystals[M]. Singapore: World Scientific, 1998.
    [17] Salamin Y I, Mocken G R, Keitel C H. Electron scattering and acceleration by a tightly focused laser beam[J]. Physical Review Accelerators and Beams, 2022, 5: 101301.
    [18] Ritus V I. Quantum effects of the interaction of elementary particles with an intense electromagnetic field[J]. Journal of Soviet Laser Research, 1985, 6(5): 497-617. doi: 10.1007/BF01120220
    [19] Esarey E, Sprangle P, Krall J, et al. Overview of plasma-based accelerator concepts[J]. IEEE Transactions on Plasma Science, 1996, 24(2): 252-288. doi: 10.1109/27.509991
    [20] Quesnel B, Mora P. Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum[J]. Physical Review E, 1998, 58: 3719. doi: 10.1103/PhysRevE.58.3719
  • 加载中
图(5)
计量
  • 文章访问数:  640
  • HTML全文浏览量:  191
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-07
  • 修回日期:  2022-12-07
  • 网络出版日期:  2022-12-12
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回