留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光与半导体材料相互作用的双电子共振吸收模型

秦可勉 潘玉贺 茆亚南 安恒 张晨光 赵江涛 王铁山 彭海波

秦可勉, 潘玉贺, 茆亚南, 等. 激光与半导体材料相互作用的双电子共振吸收模型[J]. 强激光与粒子束, 2023, 35: 096002. doi: 10.11884/HPLPB202335.220376
引用本文: 秦可勉, 潘玉贺, 茆亚南, 等. 激光与半导体材料相互作用的双电子共振吸收模型[J]. 强激光与粒子束, 2023, 35: 096002. doi: 10.11884/HPLPB202335.220376
Qin Kemian, Pan Yuhe, Mao Ya’nan, et al. Two-electron resonance absorption model of laser-semiconductor interaction[J]. High Power Laser and Particle Beams, 2023, 35: 096002. doi: 10.11884/HPLPB202335.220376
Citation: Qin Kemian, Pan Yuhe, Mao Ya’nan, et al. Two-electron resonance absorption model of laser-semiconductor interaction[J]. High Power Laser and Particle Beams, 2023, 35: 096002. doi: 10.11884/HPLPB202335.220376

激光与半导体材料相互作用的双电子共振吸收模型

doi: 10.11884/HPLPB202335.220376
基金项目: 国防科技重点实验室基金项目(142910190110);甘肃省科技重大专项(22ZD6GA011)
详细信息
    作者简介:

    秦可勉,qinkm20@lzu.edu.cn

    通讯作者:

    彭海波,penghb@lzu.edu.cn

  • 中图分类号: TN386.1

Two-electron resonance absorption model of laser-semiconductor interaction

  • 摘要: 通过提出双电子共振吸收模型,解释了激光与半导体材料相互作用时材料吸收光子的物理机制,分析了温度、掺杂数密度对吸收系数的影响;结合热峰模型,将激光的能量注入视为热源,计算出了激光入射时材料中电子温度的时空演化,通过费米狄拉克分布计算出自由电荷数密度分布,得到了电荷激发过程的计算模型,模拟了激光诱发单粒子翻转的过程。模拟结果表明,激光能量与激发电荷总量的关系是非线性的,这意味着激光能量与粒子的线性能量传输之间为非线性对应关系,与实验结果相符。
  • 图  1  双电子共振吸收原理示意图

    Figure  1.  Schematic diagram of the principle of two-electron resonance absorption

    图  2  不同掺杂数密度下吸收系数与电子温度的关系

    Figure  2.  Relationship between absorption coefficient and electron temperature with different doping concentrations

    图  3  温度的时空演化图像

    Figure  3.  Images of spatiotemporal evolution of temperature

    图  4  激发电荷总量随时间的变化

    Figure  4.  Variation of total excited charge with time

    图  5  等效线性能量传输及电荷量与激光能量的关系

    Figure  5.  Relationship between equivalent linear energy transfer, excited charge and laser energy

    图  6  掺杂数密度为1014 cm−3时,不同温度下激光能量与单粒子效应截面的对应关系

    Figure  6.  Corresponding relationship between laser energy and SEU cross section at different temperatures when the doping concentration is 1014 cm−3

    图  7  掺杂数密度为1011 cm−3时,不同温度下激光能量与单粒子效应截面的对应关系

    Figure  7.  Corresponding relationship between laser energy and SEU cross section at different temperatures when the doping concentration is 1011 cm−3

    表  1  模拟中使用的激光参数

    Table  1.   Laser parameters used in the simulation

    wavelength/nmpulse width/pslaser energy/pJspot diameter/μmabsorption coefficient (intrinsic silicon)/μm−1
    1064255231.60.00143
    下载: 导出CSV
  • [1] Buchner S P, Miller F, Pouget V, et al. Pulsed-laser testing for single-event effects investigations[J]. IEEE Transactions on Nuclear Science, 2013, 60(3): 1852-1875. doi: 10.1109/TNS.2013.2255312
    [2] Hales J M, Khachatrian A, Buchner S, et al. New approach for pulsed-laser testing that mimics heavy-ion charge deposition profiles[J]. IEEE Transactions on Nuclear Science, 2020, 67(1): 81-90. doi: 10.1109/TNS.2019.2950431
    [3] Hales J M, Khachatrian A, Buchner S, et al. Mapping the spatial dependence of charge-collection efficiency in semiconductor devices using pulsed-laser testing[J]. IEEE Transactions on Nuclear Science, 2021, 68(5): 617-625. doi: 10.1109/TNS.2021.3049651
    [4] Hales J M, Khachatrian A, Ildefonso A, et al. Pulsed-laser testing to quantitatively evaluate latchup sensitivity in mixed-signal ASICs[J]. IEEE Transactions on Nuclear Science, 2022, 69(3): 429-435. doi: 10.1109/TNS.2021.3129416
    [5] Habing D H. The use of lasers to simulate radiation-induced transients in semiconductor devices and circuits[J]. IEEE Transactions on Nuclear Science, 1965, 12(5): 91-100. doi: 10.1109/TNS.1965.4323904
    [6] Buchner S P, Wilson D, Kang K, et al. Laser simulation of single event upsets[J]. IEEE Transactions on Nuclear Science, 1987, 34(6): 1227-1233. doi: 10.1109/TNS.1987.4337457
    [7] Richter A K, Arimura I. Simulation of heavy charged particle tracks using focused laser beams[J]. IEEE Transactions on Nuclear Science, 1987, 34(6): 1234-1239. doi: 10.1109/TNS.1987.4337458
    [8] Hales J M, Khachatrian A, Buchner S, et al. Using two-photon absorption pulsed-laser excitation to simulate radiation effects in microelectronics[C]//Proceedings of 2018 Conference on Lasers and Electro-Optics. 2018.
    [9] Ildefonso A, Fleetwood Z E, Tzintzarov G N, et al. Optimizing optical parameters to facilitate correlation of laser- and heavy-ion-induced single-event transients in SiGe HBTs[J]. IEEE Transactions on Nuclear Science, 2019, 66(1): 359-367. doi: 10.1109/TNS.2018.2882821
    [10] Hales J M, Khachatrian A, Roche N J H, et al. Simulation of laser-based two-photon absorption induced charge carrier generation in silicon[J]. IEEE Transactions on Nuclear Science, 2015, 62(4): 1550-1557. doi: 10.1109/TNS.2015.2422793
    [11] Shangguan Shipeng, Ma Yingqi, Han Jianwei, et al. Single event effects of SiC diode demonstrated by pulsed-laser two photon absorption[J]. Microelectronics Reliability, 2021, 125: 114364. doi: 10.1016/j.microrel.2021.114364
    [12] 韩建伟, 上官士鹏, 马英起, 等. 脉冲激光模拟空间载荷单粒子效应研究进展[J]. 深空探测学报, 2017, 4(6):577-584 doi: 10.15982/j.issn.2095-7777.2017.12.012

    Han Jianwei, Shangguan Shipeng, Ma Yingqi, et al. Research progress for single event effects of space payloads by pulsed laser simulation[J]. Journal of Deep Space Exploration, 2017, 4(6): 577-584 doi: 10.15982/j.issn.2095-7777.2017.12.012
    [13] 胡希伟. 等离子体理论基础[M]. 北京: 北京大学出版社, 2006

    Hu Xiwei. Fundamentals of plasma theory[M]. Beijing: Peking University Press, 2006
    [14] Green M A. Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients[J]. Solar Energy Materials and Solar Cells, 2008, 92(11): 1305-1310. doi: 10.1016/j.solmat.2008.06.009
    [15] 黄建国, 韩建伟. 脉冲激光模拟单粒子效应的等效LET计算[J]. 中国科学 G辑:物理学 力学 天文学, 2005, 48(1):113-121

    Huang Jianguo, Han Jianwei. Calculation of LET in SEE simulation by pulsed laser[J]. Science in China (Series G), 2005, 48(1): 113-121
    [16] 刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 7版. 北京: 电子工业出版, 2011

    Liu Enke, Zhu Bingsheng, Luo Jinsheng. The physics of semiconductors[M]. 7th ed. Beijing: Publishing House of Electronics Industry, 2011
    [17] Batani D, Joachain C J, Martellucci S. Atoms and plasmas in super-intense laser fields[M]. Bologna: Società Italiana di Fisica, 2004.
    [18] 王竹勤, 兰生. 局部热力学平衡状态下的等离子体电导率计算[J]. 原子与分子物理学报, 2015, 32(2):259-263 doi: 10.3969/j.issn.1000-0364.2015.02.014

    Wang Zhuqin, Lan Sheng. Electrical conductivity simulation of plasma based on local thermodynamic equilibrium[J]. Journal of Atomic and Molecular Physics, 2015, 32(2): 259-263 doi: 10.3969/j.issn.1000-0364.2015.02.014
    [19] 管明, 郭红霞, 陈哲浩, 等. 单粒子效应的物理过程模拟[J]. 现代应用物理, 2019, 10:030602

    Guan Ming, Guo Hongxia, Chen Zhehao, et al. Physical process simulation of single event effect[J]. Modern Applied Physics, 2019, 10: 030602
    [20] Chettah A, Kucal H, Wang Z G, et al. Behavior of crystalline silicon under huge electronic excitations: a transient thermal spike description[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2009, 267(16): 2719-2724. doi: 10.1016/j.nimb.2009.05.063
    [21] Lazanu I, Lazanu S. Contribution of the electron-phonon interaction to Lindhard energy partition at low energy in Ge and Si detectors for astroparticle physics applications[J]. Astroparticle Physics, 2016, 75: 44-54. doi: 10.1016/j.astropartphys.2015.09.007
    [22] 侯明东, 甄红楼, 张庆祥, 等. 重离子在半导体器件中引起的单粒子效应[J]. 原子核物理评论, 2000, 17(3):165-170

    Hou Mingdong, Zhen Honglou, Zhang Qingxiang, et al. Single event effects induced by heavy ion in semiconductor device[J]. Nuclear Physics Review, 2000, 17(3): 165-170
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  370
  • HTML全文浏览量:  168
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-06
  • 修回日期:  2023-07-19
  • 录用日期:  2023-07-06
  • 网络出版日期:  2023-08-09
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回