留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

切比雪夫馈电网络开口谐振环天线阵列

范银玲 卢萍 黄卡玛

范银玲, 卢萍, 黄卡玛. 切比雪夫馈电网络开口谐振环天线阵列[J]. 强激光与粒子束, 2023, 35: 053002. doi: 10.11884/HPLPB202335.220401
引用本文: 范银玲, 卢萍, 黄卡玛. 切比雪夫馈电网络开口谐振环天线阵列[J]. 强激光与粒子束, 2023, 35: 053002. doi: 10.11884/HPLPB202335.220401
Fan Yinling, Lu Ping, Huang Kama. A planar split ring resonator antenna array fed by Chebyshev network[J]. High Power Laser and Particle Beams, 2023, 35: 053002. doi: 10.11884/HPLPB202335.220401
Citation: Fan Yinling, Lu Ping, Huang Kama. A planar split ring resonator antenna array fed by Chebyshev network[J]. High Power Laser and Particle Beams, 2023, 35: 053002. doi: 10.11884/HPLPB202335.220401

切比雪夫馈电网络开口谐振环天线阵列

doi: 10.11884/HPLPB202335.220401
基金项目: 国家自然科学基金青年科学基金项目(51907130)
详细信息
    作者简介:

    范银玲,1019079189@qq.com

    通讯作者:

    卢 萍,pinglu90@scu.edu.cn

  • 中图分类号: TN827

A planar split ring resonator antenna array fed by Chebyshev network

  • 摘要: 提出了一种基于切比雪夫馈电网络的13×14开口谐振环天线阵列。该天线阵列由天线单元和切比雪夫馈电网络组成。根据八木天线原理,该天线阵列设计的辐射贴片作为天线单元的引向器,金属地面作为反射器;辐射贴片由开口谐振环结构以及I型谐振结构组成,增强天线单元的辐射能力并提高增益;天线单元的馈电端由圆弧单极子组成,提高调节天线单元阻抗匹配的灵活性;电流矩阵指导非均匀电流分布切比雪夫馈电网络的设计,减小天线阵列的旁瓣;天线单元竖直插入馈电网络的基板,减少带有馈电网络阵列的口径大小。通过实物加工后,测试结果表明,该天线阵列在工作频率点10.1 GHz处实现了22.3 dBi的增益,E面和H面旁瓣电平分别为−16 dB和−17.66 dB,具有高增益、低副瓣的特点。
  • 图  1  天线单元结构

    Figure  1.  Structure of antenna element

    图  2  电场分布

    Figure  2.  Electric field distribution

    图  3  天线单元仿真结果

    Figure  3.  Simulation results of the antenna element

    图  4  阻抗匹配结构

    Figure  4.  Impedance matching structure

    图  5  串联馈电网络

    Figure  5.  Model of series feed network

    图  6  馈电网络

    Figure  6.  Feed network

    图  7  阵列电流分布

    Figure  7.  Surface current distribution on the antenna array

    图  8  切比雪夫平面阵列

    Figure  8.  Chebyshev planar array

    图  9  天线阵列实物图

    Figure  9.  Photographs of the proposed antenna

    图  10  S参数仿真测试结果

    Figure  10.  Simulated and measured S-parameter

    图  11  E面和H面仿真测试辐射方向图

    Figure  11.  Simulated and measured radiation patterns at E-plane and H-plane

    表  1  天线单元主要参数尺寸

    Table  1.   Size of main parameters

    L/mmW/mmH/mmHs/mmR1/mmR2/mmR3/mmS1/mmG1/mmG2/mmθ/(°)
    9.271.5241.21.822.42.70.60.8155
    下载: 导出CSV
  • [1] Mailloux R J. Phased array antenna handbook[M]. 3rd ed. Boston: Artech House, 2017.
    [2] Munir A, Saputra Y P, Maulana Y Y. Experimental approach of X-band slotted microstrip patch antenna array with non-uniform current distribution[C]//Proceedings of 2016 International Conference on Electromagnetics in Advanced Applications (ICEAA). 2016: 764-767.
    [3] Varum T, Matos J N, Pinho P, et al. Nonuniform broadband circularly polarized antenna array for vehicular communications[J]. IEEE Transactions on Vehicular Technology, 2016, 65(9): 7219-7227. doi: 10.1109/TVT.2015.2500520
    [4] Kalva N, Kumar B M. Feed-line design for a series-fed binomial microstrip antenna array with no sidelobes[J]. IEEE Antennas and Wireless Propagation Letters, 2022: 3221662.
    [5] Cao Jie, Liu Yuanyun, Wang Yuejuan, et al. Design of a new microstrip antenna array with high gain and low side-lobe[C]//Proceedings of 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT). 2018: 1-3.
    [6] Cao Weiping, Ma Lingzhi, Li Simin, et al. Conformal multi-beam directional array antenna[C]//Proceedings of the 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE). 2016: 315-317.
    [7] Wu Wenjing, Guan Boran. Design and implementation of a X-band dual-polarization phased-array antenna[C]//Proceedings of the 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE). 2018: 1-4.
    [8] Khasim N S, Krishna Y M, Thati J, et al. Analysis of different tapering techniques for efficient radiation pattern[J]. e-Journal of Science & Technology, 2013, 8(5): 47-53.
    [9] Abed A T. Study of radiation properties in Taylor distribution uniform spaced backfire antenna arrays[J]. American Journal of Electromagnetics and Applications, 2014, 2(3): 23-26. doi: 10.11648/j.ajea.20140203.11
    [10] Saputra Y P, Oktafiani F, Wahyu Y, et al. Side lobe suppression for X-band array antenna using Dolph-Chebyshev power distribution[C]//Proceedings of the 22nd Asia-Pacific Conference on Communications (APCC). 2016: 86-89.
    [11] Toan T T, Tran N M, Giang T V B. A feeding network with Chebyshev distribution for designing low side-lobe level antenna arrays[J]. VNU Journal of Science: Computer Science and Communication Engineering, 2017, 33(1): 16-21.
    [12] Qian Jiawei, Zhu Haoran, Tang Min, et al. A 24 GHz Microstrip comb array antenna with high sidelobe suppression for radar sensor[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(7): 1220-1224. doi: 10.1109/LAWP.2021.3075887
    [13] Lee J H, Lee J M, Hwang K C, et al. Capacitively coupled microstrip comb-line array antennas for millimeter-wave applications[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(8): 1336-1339. doi: 10.1109/LAWP.2020.3001945
    [14] Afoakwa S, Jung Y B. Wideband microstrip comb-line linear array antenna using stubbed-element technique for high sidelobe suppression[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(10): 5190-5199. doi: 10.1109/TAP.2017.2741023
    [15] Chen Zhichao, Otto S. A taper optimization for pattern synthesis of microstrip series-fed patch array antennas[C]//Proceedings of 2009 European Wireless Technology Conference. 2009: 160-163.
    [16] Wahid M S A, Sreenivasan M, Rao P H. Design optmization of low sidelobe level microstrip array[C]//Proceedings of 2013 IEEE Applied Electromagnetics Conference (AEMC). 2013: 1-2.
    [17] Mahatmanto B P A, Apriono C. Planar microstrip array antenna with rectangular configuration fed with Chebyshev power distribution for C-band satellite application[C]//Proceedings of 2019 IEEE International Conference on Innovative Research and Development (ICIRD). 2019: 1-4.
    [18] Fang Cong, Su Ming, Liu Yuanan. A low side lobe level microstrip antenna array for 77 GHz automotive radar[C]//Proceedings of the IEEE 6th International Conference on Computer and Communications (ICCC). 2020: 448-452.
    [19] Zhang Yuwei, Lin Shu, Liu Ling, et al. The simulation design of a low-side lobe level high gain and broadband microstrip patch antenna array[C]//Proceedings of 2016 International Symposium on Antennas and Propagation (ISAP). 2016: 742-743.
    [20] Liu Lu, Lin Shu, Wang Jun, et al. Simulation and analysis of an X-band low sidelobe and high gain microstrip antenna array[C]//Proceedings of 2017 International Symposium on Antennas and Propagation (ISAP). 2017: 1-2.
    [21] Hong Jiasheng, Lancaster M J. Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters[J]. IEEE Transactions on Microwave theory and Techniques, 1996, 44(11): 2099-2109. doi: 10.1109/22.543968
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  560
  • HTML全文浏览量:  244
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-29
  • 修回日期:  2023-01-18
  • 录用日期:  2023-01-20
  • 网络出版日期:  2023-02-28
  • 刊出日期:  2023-04-07

目录

    /

    返回文章
    返回