留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强光元件逆向哈特曼在位检测装置误差敏感因素分析与验证

王姗姗 石峰 乔硕 徐博文 郝群 宋辞 铁贵鹏 田野 翟德德 彭星

王姗姗, 石峰, 乔硕, 等. 强光元件逆向哈特曼在位检测装置误差敏感因素分析与验证[J]. 强激光与粒子束, 2023, 35: 091002. doi: 10.11884/HPLPB202335.220405
引用本文: 王姗姗, 石峰, 乔硕, 等. 强光元件逆向哈特曼在位检测装置误差敏感因素分析与验证[J]. 强激光与粒子束, 2023, 35: 091002. doi: 10.11884/HPLPB202335.220405
Wang Shanshan, Shi Feng, Qiao Shuo, et al. Error-sensitive factors analysis and verification for optical element in-situ measurement device based on phase measuring deflectometry[J]. High Power Laser and Particle Beams, 2023, 35: 091002. doi: 10.11884/HPLPB202335.220405
Citation: Wang Shanshan, Shi Feng, Qiao Shuo, et al. Error-sensitive factors analysis and verification for optical element in-situ measurement device based on phase measuring deflectometry[J]. High Power Laser and Particle Beams, 2023, 35: 091002. doi: 10.11884/HPLPB202335.220405

强光元件逆向哈特曼在位检测装置误差敏感因素分析与验证

doi: 10.11884/HPLPB202335.220405
基金项目: 国家重点研发计划项目(2021YFC2202403-2);国家自然科学基金项目(62175259)
详细信息
    作者简介:

    王姗姗,wshan@bit.edu.cn

    通讯作者:

    石 峰,shifeng@nudt.edu.cn

  • 中图分类号: TH74

Error-sensitive factors analysis and verification for optical element in-situ measurement device based on phase measuring deflectometry

  • 摘要: 针对基于强光元件高精度面形在位检测需求,开展了面形测量误差敏感因素仿真分析,进行了系统结构误差和温度误差对测量结果的影响研究,分析各类误差对测量面形误差的具体影响,设计并搭建在位检测系统,开展系统温度变化、系统重复性、系统稳定性等测量实验。研究结果表明:所建立的逆向哈特曼仿真检测模型可用于平面、球面、非球面、自由曲面等各类型被测面,各类影响因素对测量结果的影响主要体现在低频误差上,对高频误差的影响相对较小,搭建的在位检测系统6 h内测量面形误差PV值最大不超过68 nm(约λ/10),RMS值最大不超过15 nm(约λ/40)。
  • 图  1  数据传输流程图

    Figure  1.  Data transmission flow chart

    图  2  Zemax边缘光线追迹图

    Figure  2.  Edge ray tracing of Zemax

    图  3  不同k值对应测量面形误差

    Figure  3.  Different k values correspond to the measurement surface shape error

    图  4  不同k值对应面形误差

    Figure  4.  The surface shape errors corresponding to different k values

    图  5  图像发生器沿Z轴定位误差影响示意图

    Figure  5.  Schematic diagram of the influence of image generator positioning error along Z axis

    图  6  图像发生器沿Z轴正方向偏移0.01 mm引起的去倾斜后面形误差

    Figure  6.  De-skewed surface shape error caused by the image generator offsetting 0.01 mm along the positive direction of Z axis

    图  7  沿Z轴方向偏移引起的面形误差大小

    Figure  7.  Surface shape error caused by image generator’s offset along the Z axis direction

    图  8  面形误差对应Zernike系数

    Figure  8.  Zernike coefficients corresponding to surface shape error

    图  9  沿Z轴方向偏移引起的面形误差大小

    Figure  9.  Size of the surface shape error caused by the offset along the Z axis

    图  10  面形误差对应Zernike系数

    Figure  10.  Zernike coefficients corresponding to surface shape error

    图  11  k1>0和k1<0时采样点变化示意图

    Figure  11.  Schematic diagram of the change of sampling points when k1 > 0 and k1 < 0

    图  12  k1>0时探测器镜头畸变引起的斜率及面形误差

    Figure  12.  k1>0, slope and surface shape error caused by detector lens distortion

    图  13  探测器镜头畸变引起的面形误差大小

    Figure  13.  Surface shape error caused by lens distortion of detector

    图  14  面形误差对应Zernike系数

    Figure  14.  Zernike coefficients corresponding to surface shape error

    图  15  在位检测系统结构

    Figure  15.  In-situ detection system structure

    图  16  测量结果随时间变化图

    Figure  16.  Change of measurement results with time

    图  17  测量结果和温度随时间变化图

    Figure  17.  Measurement results of surface shape error and temperature variation with time

    表  1  图像发生器定位误差对测量结果影响

    Table  1.   Influence of image generator’s positioning error on the measurement results

    directionmaximum surface shape error/nmcorresponding to Zernike coefficients
    PVRMSnumber of termsnumber of main itemsmain types
    along the X axis 77.2 10.1 2、5、8、15 5 45° primary astigmatism
    along the Y axis 88.9 18.1 3、4、6、7、9 4、6 defocusing and 0° primary astigmatism
    along the Z axis 152.7 30.6 3、4、6、7 4、6 defocusing and 0° primary astigmatism
    下载: 导出CSV

    表  2  针孔光阑定位误差对测量结果影响

    Table  2.   Effect of pinhole diaphragm positioning error on measurement results

    directionmaximum surface shape error/nmcorresponding to Zernike coefficients
    PVRMSnumber of termsnumber of main itemsmain types
    along the X axis 81.8 10.8 2、5、8、15 5 45° primary astigmatism
    along the Y axis 94.2 19.1 3、4、6、7、9 4、6 defocusing and 0° primary astigmatism
    along the Z axis 161.9 32.4 3、4、6、7 4、6 defocusing and 0° primary astigmatism
    下载: 导出CSV

    表  3  探测器镜头畸变对测量结果影响

    Table  3.   Effect of detector lens distortion on measurement results

    influencing factormaximum surface
    shape error/nm
    corresponding to Zernike
    coefficients
    PVRMSnumber of
    terms
    number of
    main items
    main
    types
    detector lens
    distortion
    (|k1|=1×10−3)
    pin-cushion distortion 155.3 24.9 3、4、6、11、12、28 4、6、11、12 defocusing, 0° primary astigmatism
    and higher-order aberrations
    barrel distortion 155.3 24.9 3、4、6、11、12、28 4、6、11、12 defocusing, 0° primary astigmatism
    and higher-order aberrations
    下载: 导出CSV

    表  4  温度变化对测量结果影响

    Table  4.   Effect of temperature change on measurement results

    influencing factormaximum surface shape error/nmcorresponding to Zernike coefficients
    PVRMSnumber of
    terms
    number of
    main items
    main types
    image generator expansion 416.9 85.3 3、4、5、6、7 3、4、5 defocusing, 45° primary astigmatism,
    0° primary astigmatism
    detector expansion 99.7 20.4 3、4、6、7 4 focusing out
    support structure expansion 4.9 1.0 3、4、6、7、9 4、6 defocusing and 0°
    primary astigmatism
    下载: 导出CSV

    表  5  检测系统参数

    Table  5.   Detection system parameters

    measurement serial numberPV/nmRMS/nmmeasurement serial numberPV/nmRMS/nm
    1 19.2 3.1 16 46.6 9.6
    2 18.4 2.9 17 46.7 9.6
    3 21.7 4.0 18 47.7 10.0
    4 28.3 5.4 19 49.3 10.3
    5 29.7 4.8 20 44.9 9.3
    6 27.7 5.2 21 42.6 8.8
    7 33.7 6.6 22 45.5 9.5
    8 34.4 6.6 23 43.5 8.7
    9 31.3 5.9 24 41.7 7.3
    10 34.3 6.6 25 41.3 6.6
    11 37.4 7.1 26 50.1 9.0
    12 40.5 8.1 27 60.6 10.9
    13 44.5 9.3 28 45.7 9.0
    14 48.2 10.0 29 37.6 6.3
    15 48.1 10.1 30 39.9 7.1
    下载: 导出CSV
  • [1] 张梦瑶, 田爱玲, 王大森, 等. 基于逆向优化策略的面形绝对检测平移量研究[J]. 中国激光, 2022, 49:1804003 doi: 10.3788/CJL202249.1804003

    Zhang Mengyao, Tian Ailing, Wang Dasen, et al. Translation of surface shape absolute testing based on reverse optimization strategy[J]. Chinese Journal of Lasers, 2022, 49: 1804003 doi: 10.3788/CJL202249.1804003
    [2] 侯溪, 张帅, 胡小川, 等. 超高精度面形干涉检测技术进展[J]. 光电工程, 2020, 47:200209

    Hou Xi, Zhang Shuai, Hu Xiaochuan, et al. The research progress of surface interferometric measurement with higher accuracy[J]. Opto-Electronic Engineering, 2020, 47: 200209
    [3] Ye Meitu, Liang Jin, Li Leigang, et al. Simultaneous measurement of external and internal surface shape and deformation based on photogrammetry and stereo-DIC[J]. Optics and Lasers in Engineering, 2022, 158: 107179. doi: 10.1016/j.optlaseng.2022.107179
    [4] Su Peng, Wang Yuhao, Burge J H, et al. Non-null full field X-ray mirror metrology using SCOTS: a reflection deflectometry approach[J]. Optics Express, 2012, 20(11): 12393-12406. doi: 10.1364/OE.20.012393
    [5] Berger G, Petter J. Non-contact metrology of aspheric surfaces based on MWLI technology[C]//Proceedings of SPIE 8884, Optifab 2013. 2013: 88840V.
    [6] Anderson D S, Burge J H. Swing-arm profilometry of aspherics[C]//Proceedings of SPIE 2536, Optical Manufacturing and Testing. 1995: 169-179.
    [7] Wan Xinjun, Bin Boyi, Xie Shuping, et al. Development of an integrated freeform optics measurement system based on phase measuring deflectometry[C]//Proceedings of SPIE 10847, Optical Precision Manufacturing, Testing, and Applications. 2018: 1084710.
    [8] Guo Chunfeng, Hu Anduo. Three-dimensional shape measurement of aspheric mirrors with null phase measuring deflectometry[J]. Optical Engineering, 2019, 58: 104102.
    [9] Chaudhuri R, Papa J, Rolland J P. System design of a single-shot reconfigurable null test using a spatial light modulator for freeform metrology[J]. Optics Letters, 2019, 44(8): 2000-2003. doi: 10.1364/OL.44.002000
    [10] Fang Fengzhou, Zhang Xiaodong, Weckenmann A, et al. Manufacturing and measurement of freeform optics[J]. CIRP Annals, 2013, 62(2): 823-846. doi: 10.1016/j.cirp.2013.05.003
    [11] Lei Huang, Idir M, Zuo Chao, et al. Comparison of two-dimensional integration methods for shape reconstruction from gradient data[J]. Optics and Lasers in Engineering, 2015, 64: 1-11. doi: 10.1016/j.optlaseng.2014.07.002
    [12] Xu Yongjia, Gao Feng, Jiang Xiangqian. Enhancement of measurement accuracy of optical stereo deflectometry based on imaging model analysis[J]. Optics and Lasers in Engineering, 2018, 111: 1-7. doi: 10.1016/j.optlaseng.2018.07.007
    [13] Huang Lei, Ng C, Asundi A K. Dynamic 3D measurement for specular reflecting surface with monoscopic fringe reflection deflectometry[C]//Proceedings of the Computational Optical Sensing and Imaging 2011. 2011: CWC3.
    [14] Song Lei, Yue Huimin, Kim H, et al. A study on carrier phase distortion in phase measuring deflectometry with non-telecentric imaging[J]. Optics Express, 2012, 20(22): 24505-24515. doi: 10.1364/OE.20.024505
    [15] 阮一郎, 李大海, 余林治, 等. 基于相位测量偏折术的成像透镜轴外点波像差测量[J]. 中国激光, 2022, 49:2104003 doi: 10.3788/CJL202249.2104003

    Ruan Yilang, Li Dahai, Yu Linzhi, et al. Off-axis point wave aberration testing for imaging lens based on phase measuring deflectometry[J]. Chinese Journal of Lasers, 2022, 49: 2104003 doi: 10.3788/CJL202249.2104003
    [16] 陈贞屹, 赵文川, 张启灿, 等. 基于立体相位测量偏折术的预应力薄镜面形检测[J]. 光电工程, 2020, 47:190435

    Chen Zhenyi, Zhao Wenchuan, Zhang Qican, et al. Shape measurement of stressed mirror based on stereoscopic phase measuring deflectometry[J]. Opto-Electronic Engineering, 2020, 47: 190435
    [17] Su Peng, Khreishi M, Huang Run, et al. Precision aspheric optics testing with SCOTS: a deflectometry approach[C]//Proceedings of SPIE 8788, Optical Measurement Systems for Industrial Inspection VIII. 2013: 87881E.
    [18] Faber C, Olesch E, Krobot R, et al. Deflectometry challenges interferometry: the competition gets tougher![C]//Proceedings of SPIE 8493, Interferometry XVI: Techniques and Analysis. 2012: 84930R.
    [19] 冯婕, 白瑜, 邢廷文. Zernike多项式波面拟合精度研究[J]. 光电技术应用, 2011, 26(2):31-34 doi: 10.3969/j.issn.1673-1255.2011.02.009

    Feng Jie, Bai Yu, Xing Tingwen. Fitting accuracy of wavefront using Zernike polynomials[J]. Electro-Optic Technology Application, 2011, 26(2): 31-34 doi: 10.3969/j.issn.1673-1255.2011.02.009
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  360
  • HTML全文浏览量:  131
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-30
  • 修回日期:  2023-05-23
  • 录用日期:  2023-05-27
  • 网络出版日期:  2023-07-13
  • 刊出日期:  2023-09-01

目录

    /

    返回文章
    返回