留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多模光纤的时空锁模激光器的研究进展

张慧聪 万璐 周涛

张慧聪, 万璐, 周涛. 基于多模光纤的时空锁模激光器的研究进展[J]. 强激光与粒子束, 2023, 35: 101002. doi: 10.11884/HPLPB202335.220410
引用本文: 张慧聪, 万璐, 周涛. 基于多模光纤的时空锁模激光器的研究进展[J]. 强激光与粒子束, 2023, 35: 101002. doi: 10.11884/HPLPB202335.220410
Zhang Huicong, Wan Lu, Zhou Tao. Research progress of spatiotemporal mode-locked laser based on multimode fiber[J]. High Power Laser and Particle Beams, 2023, 35: 101002. doi: 10.11884/HPLPB202335.220410
Citation: Zhang Huicong, Wan Lu, Zhou Tao. Research progress of spatiotemporal mode-locked laser based on multimode fiber[J]. High Power Laser and Particle Beams, 2023, 35: 101002. doi: 10.11884/HPLPB202335.220410

基于多模光纤的时空锁模激光器的研究进展

doi: 10.11884/HPLPB202335.220410
基金项目: 浙江农林大学科研发展基金项目 (2021LFR014,2021FR0009);浙江省自然科学基金项目(LQ23F050003);国家自然科学基金项目(12261131495)
详细信息
    作者简介:

    张慧聪,zhang041420@126.com

    万 璐,1964904450@qq.com

  • 中图分类号: TN248

Research progress of spatiotemporal mode-locked laser based on multimode fiber

  • 摘要:

    介绍了时空锁模的基本原理和时空锁模的理论模型−吸引子解剖。从空间结构和全光纤结构两方面介绍了近年来国内外在时空锁模光纤激光器方面的研究进展,包括激光腔型的改进、输出性能的提升和实时动力学的观测等。最后分析了目前时空锁模激光器的优势和不足,并对其发展方向进行了展望:时空锁模激光器在产生高功率超短脉冲方面有着巨大的优势,但输出光斑质量差在一定程度上限制了它的实际应用;利用时空自相似演化、波前整形等技术提升光束质量将是未来时空锁模激光器的发展方向。

  • 图  1  多模激光腔内时空锁模前后的频率分布和模式分布[34]

    Figure  1.  Frequency distribution and mode distribution before and after STML in a multimode laser cavity [34]

    图  2  吸引子解剖理论和最大增益原则的概念图[34]

    Figure  2.  Conceptual outline of STML, attractor dissection, and the spatiotemporal maximum-gain principle[34]

    图  3  第一台时空锁模光纤激光器实验装置图[33]

    Figure  3.  Experimental setup of the first STML fiber laser[33]

    图  4  基于空间光路NPR的时空锁模光纤激光器的实验装置

    Figure  4.  Experimental setup for STML fiber lasers based on spatial optical structures of NPR

    图  5  实时MUST测量系统示意图[45]

    Figure  5.  Schematic diagram of real-time MUST measurement system[45]

    图  6  多模光纤激光器中双通道多脉冲起振过程[46]

    Figure  6.  Multipulse buildup dynamics of dual channels in a multimode fiber laser[46]

    图  7  多模调Q与时空锁模转换的实验装置图[49]

    Figure  7.  Experimental setup of conversion between multi-mode Q-switching and STML[49]

    图  8  产生时空自相似子[50]和近单模脉冲[51]的时空锁模光纤激光器

    Figure  8.  STML fiber lasers generating spatiotemporal self-similar soliton[50] and nearly single-mode pulse[51]

    图  9  利用遗传波前整形的多模光纤激光器示意图[52]

    Figure  9.  Schematic illustration of a genetic multi-dimensional fiber laser using wavefront shaping [52]

    图  10  可见光波段的超快光纤系统[53]

    Figure  10.  Ultrafast optical fiber system in visible light band[53]

    图  11  基于多模干涉滤波效应的全光纤环形腔时空锁模激光器[55]

    Figure  11.  All-fiber ring cavity STML laser based on multimode interference filtering effect[55]

    图  12  基于非线性环镜滤波器的多模光纤激光器[57]

    Figure  12.  Multimode fiber laser based on nonlinear loop mirror filter[57]

    图  13  基于多模干涉滤波效应的时空锁模激光器[58-59]

    Figure  13.  STML laser based on multimode interference filtering effect[58-59]

    图  14  “8”字腔全光纤时空锁模光纤激光器

    Figure  14.  “8” cavity all-fiber STML fiber lasers

    图  15  基于多模干涉滤波的全光纤高功率时空锁模激光器[62]

    Figure  15.  All-fiber high-power STML laser based on multimode interference filtering[62]

    图  16  大模式色散下的全光纤时空锁模激光器[63]

    Figure  16.  All-fiber STML laser with large modal dispersion[63]

    图  17  紧凑型部分多模的时空锁模光纤激光器[64]

    Figure  17.  Compact partially multimode STML fiber laser[64]

    图  18  基于光束自清洁效应的全光纤时空锁模光纤激光器[66]

    Figure  18.  All-fiber STML fiber laser based on beam self-cleaning effect[66]

    表  1  空间结构时空锁模光纤激光器研究进展

    Table  1.   Research progress of STML fiber lasers with spatial structures

    yearresearch
    group
    gain fiber, core/cladding
    diameter/μm
    GIMF, core/cladding
    diameter/μm
    output
    wavelength/nm
    pulse
    duration
    pulse
    energy/nJ
    reference
    2017 Cornell University Yb-doped
    10/125
    50/125 1030 150 fs 5~40 [33]
    2018 Tsinghua University Yb-doped
    10/125
    50/125 1030 4.15 ps 4.1 [41]
    2019 Tsinghua University Yb-doped
    10/125
    50/125 1030 2.4 ps 1.5 [42]
    2021 Tsinghua University Yb-doped
    20/125
    50/125 1030 [43]
    2021 Tsinghua University Yb-doped
    20/125
    50/125 1030 5 ns 1.0~2.6 [46]
    2021 Tsinghua University Yb-doped
    20/125
    50/125 1030 1.88 ns 3.08 [49]
    2021 South China University
    of Technology
    Yb-doped
    20/125
    50/125 1030 [45]
    2019 Polytechnique Fédérale
    de Lausanne
    Yb-doped
    10/125
    50/125 1030 2.3 ps 2.4 [50]
    2020 Polytechnique Fédérale
    de Lausanne
    Yb-doped
    10/125
    50/125 1030 <100 fs 24 [51]
    2020 California Institute
    of Technology
    Yb-doped
    25/250
    62.5/250 1060 [52]
    2022 Xiamen University Pr/Yb-doped
    ZBLAN
    5/25
    635 9 ps 4 [53]
    下载: 导出CSV

    表  2  全光纤时空锁模光纤激光器研究进展

    Table  2.   Research progress of all-fiber STML fiber lasers

    yearresearch
    group
    gain fiber, core/cladding
    diameter/μm
    Pulse
    duration
    pulse
    energy/nJ
    mode-locked
    type
    MMI
    type
    reference
    2020Polytechnique Fédérale de LausanneYb-doped
    10/125
    6.24 ps0.5NPEF-M-F[55]
    2020South China Normal UniversityYb-doped
    10/125
    4.29 psSESAMM-F-M[57]
    2021South China Normal UniversityYb-doped
    10/125
    5.26 psSESAMM-F-M[58]
    2021South China Normal UniversityEr-doped
    20/125
    16.14 psSESAMM-F-M[59]
    2021South China Normal UniversityYb-doped
    10/125
    4.81 ps0.195NALMNALM[60]
    2022South China Normal UniversityEr-doped
    20/125
    970 fsNALMA-P[61]
    2022Changchun University of Science
    and Technology
    Yb-doped
    10/125
    5.65 ps6NPRF-M-F[62]
    2022Beijing Jiaotong UniversityYb-doped
    10/125
    20.1 ps8NPRF-M-F[63]
    2022China Jiliang UniversityEr-doped
    7/125
    630.5 fs0.65S-M-SS-M-S[64]
    2021University of Science and
    Technology of China
    Yb-doped
    10/125
    33.28 ps11.67NPRM-F-M[66]
    下载: 导出CSV
  • [1] Kerse C, Kalaycıoğlu H, Elahi P, et al. Ablation-cooled material removal with ultrafast bursts of pulses[J]. Nature, 2016, 537(7618): 84-88. doi: 10.1038/nature18619
    [2] Bailey G W, Price R L, Voelkl E, et al. Applications of the SESAM in materials science[J]. Microscopy and Microanalysis, 2001, 7(S2): 1126-1127. doi: 10.1017/S1431927600031706
    [3] Zhao Kangjun, Gao Chenxin, Xiao Xiaosheng, et al. Buildup dynamics of asynchronous vector solitons in a polarization-multiplexed dual-comb fiber laser[J]. Optics Letters, 2020, 45(14): 4040-4043. doi: 10.1364/OL.398323
    [4] Chen Jie, Zhao Xin, Yao Zijun, et al. Dual-comb spectroscopy of methane based on a free-running Erbium-doped fiber laser[J]. Optics Express, 2019, 27(8): 11406-11412. doi: 10.1364/OE.27.011406
    [5] Bai Xue, Ma Jun, Li Xu, et al. Focus-tunable fiber-laser ultrasound sensor for high-resolution linear-scanning photoacoustic computed tomography[J]. Applied Physics Letters, 2020, 116: 153701. doi: 10.1063/5.0006248
    [6] Letokhov V S. Laser biology and medicine[J]. Nature, 1985, 316(6026): 325-330. doi: 10.1038/316325a0
    [7] Brasch V, Geiselmann M, Herr T, et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation[J]. Science, 2016, 351(6271): 357-360. doi: 10.1126/science.aad4811
    [8] Wang Heming, Lu Yukun, Wu Lue, et al. Dirac solitons in optical microresonators[J]. Light: Science & Applications, 2020, 9: 205.
    [9] Goda K, Jalali B. Dispersive Fourier transformation for fast continuous single-shot measurements[J]. Nature Photonics, 2013, 7(2): 102-112. doi: 10.1038/nphoton.2012.359
    [10] Tang Haocheng, Men Ting, Liu Xianglei, et al. Single-shot compressed optical field topography[J]. Light: Science & Applications, 2022, 11: 244.
    [11] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221. doi: 10.1016/0030-4018(85)90120-8
    [12] Cho C Y, Huang Y P, Su K W. The energy scaling in a side-pumped ultra-low-magnification unstable resonator by employing a compact master oscillator power amplifier[J]. Applied Physics B, 2016, 122: 261.
    [13] Liu Bin, Liu Chong, Shen Lifeng, et al. Beam quality management by periodic reproduction of wavefront aberrations in end-pumped Nd: YVO4 laser amplifiers[J]. Optics Express, 2016, 24(8): 8988-8996. doi: 10.1364/OE.24.008988
    [14] Dong Xiaolin, Xiao Hu, Xu Shanhui, et al. 122-W high-power single-frequency MOPA fiber laser in all-fiber format[J]. Chinese Optics Letters, 2011, 9: 111404. doi: 10.3788/COL201109.111404
    [15] Chen Shuo, Liu Yuanyuan, Jin Zhen, et al. Asymmetry core effects in multimode fibers for space-division multiplexing[J]. Journal of the Optical Society of America B, 2021, 38(11): 3309-3318. doi: 10.1364/JOSAB.431198
    [16] Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres[J]. Nature Photonics, 2013, 7(5): 354-362. doi: 10.1038/nphoton.2013.94
    [17] Hofmann P, Mafi A, Jollivet C, et al. Detailed investigation of mode-field adapters utilizing multimode-interference in graded index fibers[J]. Journal of Lightwave Technology, 2012, 30(14): 2289-2298. doi: 10.1109/JLT.2012.2196406
    [18] Fabert M, Săpânțan M, Krupa K, et al. Coherent combining of self-cleaned multimode beams[J]. Scientific Reports, 2020, 10: 20481. doi: 10.1038/s41598-020-77505-0
    [19] Leventoux Y, Parriaux A, Sidelnikov O, et al. Highly efficient few-mode spatial beam self-cleaning at 1.5μm[J]. Optics Express, 2020, 28(10): 14333-14344. doi: 10.1364/OE.392081
    [20] Mangini F, Gervaziev M, Ferraro M, et al. Statistical mechanics of beam self-cleaning in GRIN multimode optical fibers[J]. Optics Express, 2022, 30(7): 10850-10865. doi: 10.1364/OE.449187
    [21] Chen Jikai, Wang Zhaokun, Li Liujiang, et al. GIMF-based SA for generation of high pulse energy ultrafast solitons in a mode-locked linear-cavity fiber laser[J]. Journal of Lightwave Technology, 2020, 38(6): 1480-1485. doi: 10.1109/JLT.2019.2954828
    [22] Leventoux Y, Granger G, Krupa K, et al. Frequency-resolved spatial beam mapping in multimode fibers: application to mid-infrared supercontinuum generation[J]. Optics Letters, 2021, 46(15): 3717-3720. doi: 10.1364/OL.428623
    [23] Ahsan A S, Agrawal G P. Graded-index solitons in multimode fibers[J]. Optics Letters, 2018, 43(14): 3345-3348. doi: 10.1364/OL.43.003345
    [24] Osman M S. On multi-soliton solutions for the (2+1)-dimensional breaking soliton equation with variable coefficients in a graded-index waveguide[J]. Computers & Mathematics with Applications, 2018, 75(1): 1-6.
    [25] Wang Xiaoyue, Peng Junsong, Huang Kun, et al. Experimental study on buildup dynamics of a harmonic mode-locking soliton fiber laser[J]. Optics Express, 2019, 27(20): 28808-28815. doi: 10.1364/OE.27.028808
    [26] Eslami Z, Ryczkowski P, Amiot C, et al. High-power short-wavelength infrared supercontinuum generation in multimode fluoride fiber[J]. Journal of the Optical Society of America B, 2019, 36(2): A72-A78. doi: 10.1364/JOSAB.36.000A72
    [27] Lopez-Galmiche G, Eznaveh Z S, Eftekhar M A, et al. Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm[J]. Optics Letters, 2016, 41(11): 2553-2556. doi: 10.1364/OL.41.002553
    [28] Deng Zhixiang, Chen Yu, Liu Jun, et al. Emission of multiple resonant radiations by spatiotemporal oscillation of multimode dark pulses[J]. Optics Express, 2019, 27(24): 36022-36033. doi: 10.1364/OE.27.036022
    [29] Chekhovskoy I S, Rubenchik A M, Shtyrina O V, et al. Nonlinear discrete wavefront shaping for spatiotemporal pulse compression with multicore fibers[J]. Journal of the Optical Society of America B, 2018, 35(9): 2169-2175. doi: 10.1364/JOSAB.35.002169
    [30] Auston D. Transverse mode locking[J]. IEEE Journal of Quantum Electronics, 1968, 4(6): 420-422. doi: 10.1109/JQE.1968.1075357
    [31] Smith P W. Simultaneous phase-locking of longitudinal and transverse laser modes[J]. Applied Physics Letters, 1968, 13(7): 235-237. doi: 10.1063/1.1652586
    [32] Côté D, Van Driel H M. Period doubling of a femtosecond Ti: sapphire laser by total mode locking[J]. Optics Letters, 1998, 23(9): 715-717. doi: 10.1364/OL.23.000715
    [33] Wright L G, Christodoulides D N, Wise F W. Spatiotemporal mode-locking in multimode fiber lasers[J]. Science, 2017, 358(6359): 94-97. doi: 10.1126/science.aao0831
    [34] Wright L G, Sidorenko P, Pourbeyram H, et al. Mechanisms of spatiotemporal mode-locking[J]. Nature Physics, 2020, 16(5): 565-570. doi: 10.1038/s41567-020-0784-1
    [35] Su Ning, Li Pingxue, Yao Chuanfei, et al. Passively mode-locked Yb-doped all-fiber oscillator operating at 979 nm and 1032 nm with the single wall carbon nanotubes as SA[J]. Optik, 2019, 198: 163282. doi: 10.1016/j.ijleo.2019.163282
    [36] Cui Yudong, Liu Xueming. Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons[J]. Optics Express, 2013, 21(16): 18969-18974. doi: 10.1364/OE.21.018969
    [37] Gong Ning, Hu Xuewen, Fang Tiantian, et al. Transition metals embedded siloxene as single-atom catalyst for advanced sulfur host in lithium–sulfur batteries: a theoretical study[J]. Advanced Energy Materials, 2022, 12: 2201530. doi: 10.1002/aenm.202201530
    [38] Doran N J, Wood D. Nonlinear-optical loop mirror[J]. Optics Letters, 1988, 13(1): 56-58. doi: 10.1364/OL.13.000056
    [39] Fermann M E, Haberl F, Hofer M, et al. Nonlinear amplifying loop mirror[J]. Optics Letters, 1990, 15(13): 752-754. doi: 10.1364/OL.15.000752
    [40] Liu Yusong, Luo Yiyang, Xia Ran, et al. Internal motions of harmonically mode-locked soliton molecules in a NPR based fiber laser[J]. Optics Communications, 2021, 486: 126790. doi: 10.1016/j.optcom.2021.126790
    [41] Qin Huaqiang, Xiao Xiaosheng, Wang Pan, et al. Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser[J]. Optics Letters, 2018, 43(9): 1982-1985. doi: 10.1364/OL.43.001982
    [42] Ding Yihang, Xiao Xiaosheng, Wang Pan, et al. Multiple-soliton in spatiotemporal mode-locked multimode fiber lasers[J]. Optics Express, 2019, 27(8): 11435-11446. doi: 10.1364/OE.27.011435
    [43] Ding Yihang, Xiao Xiaosheng, Liu Kewei, et al. Spatiotemporal mode-locking in lasers with large modal dispersion[J]. Physical Review Letters, 2021, 126: 093901. doi: 10.1103/PhysRevLett.126.093901
    [44] Nan Suqin, Bai Yanfeng, Huang Xianwei, et al. The unified imaging condition of Fourier-transform ghost imaging in the far field[J]. Laser Physics Letters, 2020, 17: 055201. doi: 10.1088/1612-202X/ab7a9a
    [45] Guo Yuankai, Wen Xiaoxiao, Lin Wei, et al. Real-time multispeckle spectral-temporal measurement unveils the complexity of spatiotemporal solitons[J]. Nature Communications, 2021, 12: 67. doi: 10.1038/s41467-020-20438-z
    [46] Liu Kewei, Xiao Xiaosheng, Ding Yihang, et al. Buildup dynamics of multiple solitons in spatiotemporal mode-locked fiber lasers[J]. Photonics Research, 2021, 9(10): 1898-1906. doi: 10.1364/PRJ.428687
    [47] Kong Lingjie, Xiao Xiaosheng, Yang Changxi. Operating regime analysis of a mode-locking fiber laser using a difference equation model[J]. Journal of Optics, 2011, 13: 105201. doi: 10.1088/2040-8978/13/10/105201
    [48] Li Feng, Wai P K A, Kutz J N. Geometrical description of the onset of multi-pulsing in mode-locked laser cavities[J]. Journal of the Optical Society of America B, 2010, 27(10): 2068-2077. doi: 10.1364/JOSAB.27.002068
    [49] Liu Kewei, Xiao Xiaosheng, Yang Changxi. Observation of transition between multimode Q-switching and spatiotemporal mode locking[J]. Photonics Research, 2021, 9(4): 530-534. doi: 10.1364/PRJ.416523
    [50] Teğin U, Kakkava E, Rahmani B, et al. Spatiotemporal self-similar fiber laser[J]. Optica, 2019, 6(11): 1412-1415. doi: 10.1364/OPTICA.6.001412
    [51] Teğin U, Rahmani B, Kakkava E, et al. Single-mode output by controlling the spatiotemporal nonlinearities in mode-locked femtosecond multimode fiber lasers[J]. Advanced Photonics, 2020, 2: 056005.
    [52] Wei Xiaoming, Jing J C, Shen Yuecheng, et al. Harnessing a multi-dimensional fibre laser using genetic wavefront shaping[J]. Light: Science & Applications, 2020, 9: 149.
    [53] Ruan Qiujun, Xiao Xiaosheng, Zou Jinhai, et al. Visible-wavelength spatiotemporal mode-locked fiber laser delivering 9 ps, 4 nJ pulses at 635 nm[J]. Laser & Photonics Reviews, 2022, 16: 2100678.
    [54] Zou Jinhai, Dong Chuchu, Wang Hongjian, et al. Towards visible-wavelength passively mode-locked lasers in all-fibre format[J]. Light: Science & Applications, 2020, 9: 61.
    [55] Teğin U, Rahmani B, Kakkava E, et al. All-fiber spatiotemporally mode-locked laser with multimode fiber-based filtering[J]. Optics Express, 2020, 28(16): 23433-23438. doi: 10.1364/OE.399668
    [56] Teğin U, Ortaç B. All-fiber all-normal-dispersion femtosecond laser with a nonlinear multimodal interference-based saturable absorber[J]. Optics Letters, 2018, 43(7): 1611-1614. doi: 10.1364/OL.43.001611
    [57] Wu Han, Lin Wei, Tan Yanjie, et al. Pulses with switchable wavelengths and hysteresis in an all-fiber spatio-temporal mode-locked laser[J]. Applied Physics Express, 2020, 13: 022008. doi: 10.35848/1882-0786/ab6938
    [58] Long Jingan, Gao Yuxin, Lin Wei, et al. Switchable and spacing tunable dual-wavelength spatiotemporal mode-locked fiber laser[J]. Optics Letters, 2021, 46(3): 588-591. doi: 10.1364/OL.412086
    [59] Ma Zelong, Long Jingan, Lin Wei, et al. Tunable spatiotemporal mode-locked fiber laser at 1.55 μm[J]. Optics Express, 2021, 29(6): 9465-9473. doi: 10.1364/OE.415318
    [60] Lin Xubin, Gao Yuxin, Long Jingan, et al. All few-mode fiber spatiotemporal mode-locked figure-eight laser[J]. Journal of Lightwave Technology, 2021, 39(17): 5611-5616. doi: 10.1109/JLT.2021.3087784
    [61] Wu Jiawen, Liu Guangxin, Gao Yuxin, et al. Switchable femtosecond and picosecond spatiotemporal mode-locked fiber laser based on NALM and multimode interference filtering effects[J]. Optics & Laser Technology, 2022, 155: 108414.
    [62] Xie Shangzhi, Jin Liang, Zhang He, et al. All-fiber high-power spatiotemporal mode-locked laser based on multimode interference filtering[J]. Optics Express, 2022, 30(2): 2909-2917. doi: 10.1364/OE.443505
    [63] Zhang Huaiwei, Zhang Yunhong, Peng Jiying, et al. All-fiber spatiotemporal mode-locking lasers with large modal dispersion[J]. Photonics Research, 2022, 10(2): 483-490. doi: 10.1364/PRJ.444750
    [64] Zhang Xuebin, Wang Zhaokun, Shen Changyu, et al. Spatiotemporal self-mode-locked operation in a compact partial multimode Er-doped fiber laser[J]. Optics Letters, 2022, 47(8): 2081-2084. doi: 10.1364/OL.451832
    [65] Qiu Mingwei, Chen Mengmeng, Zhang Zuxing. Wavelength-dependent Kerr beam self-cleaning in spatiotemporal mode-locked multimode fiber laser[J]. IEEE Photonics Technology Letters, 2021, 33(19): 1073-1076. doi: 10.1109/LPT.2021.3103154
    [66] Dai Chuansheng, Dong Zhipeng, Lin Jiaqiang, et al. Self-cleaning effect in an all-fiber spatiotemporal mode-locked laser based on graded-index multimode fiber[J]. Optik, 2021, 243: 167487. doi: 10.1016/j.ijleo.2021.167487
    [67] Lyu Meng, Lin Zhiquan, Li Guowei, et al. Fast modal decomposition for optical fibers using digital holography[J]. Scientific Reports, 2017, 7: 6556. doi: 10.1038/s41598-017-06974-7
    [68] Fontaine N K, Ryf R, Chen H S, et al. Laguerre-Gaussian mode sorter[J]. Nature Communications, 2019, 10: 1865. doi: 10.1038/s41467-019-09840-4
    [69] Shapira O, Abouraddy A F, Joannopoulos J D, et al. Complete modal decomposition for optical waveguides[J]. Physical Review Letters, 2005, 94: 143902. doi: 10.1103/PhysRevLett.94.143902
    [70] Brüning R, Gelszinnis P, Schulze C, et al. Comparative analysis of numerical methods for the mode analysis of laser beams[J]. Applied Optics, 2013, 52(32): 7769-7777. doi: 10.1364/AO.52.007769
    [71] Lü Haibin, Zhou Pu, Wang Xiaolin, et al. Fast and accurate modal decomposition of multimode fiber based on stochastic parallel gradient descent algorithm[J]. Applied Optics, 2013, 52(12): 2905-2908. doi: 10.1364/AO.52.002905
    [72] Xie Kun, Liu Wenguang, Zhou Qiong, et al. Adaptive phase correction of dynamic multimode beam based on modal decomposition[J]. Optics Express, 2019, 27(10): 13793-13802. doi: 10.1364/OE.27.013793
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  777
  • HTML全文浏览量:  329
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-29
  • 修回日期:  2023-05-22
  • 录用日期:  2023-05-15
  • 网络出版日期:  2023-06-13
  • 刊出日期:  2023-10-08

目录

    /

    返回文章
    返回