留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气湍流和热晕效应对列阵合成激光传输特性和光束质量影响的理论研究进展

李晓庆 季小玲

李晓庆, 季小玲. 大气湍流和热晕效应对列阵合成激光传输特性和光束质量影响的理论研究进展[J]. 强激光与粒子束, 2023, 35: 041007. doi: 10.11884/HPLPB202335.220411
引用本文: 李晓庆, 季小玲. 大气湍流和热晕效应对列阵合成激光传输特性和光束质量影响的理论研究进展[J]. 强激光与粒子束, 2023, 35: 041007. doi: 10.11884/HPLPB202335.220411
Li Xiaoqing, Ji Xiaoling. Theoretical research progress on the influence of atmospheric turbulence and thermal blooming on characteristics and beam quality of laser array beams propagating in the atmosphere[J]. High Power Laser and Particle Beams, 2023, 35: 041007. doi: 10.11884/HPLPB202335.220411
Citation: Li Xiaoqing, Ji Xiaoling. Theoretical research progress on the influence of atmospheric turbulence and thermal blooming on characteristics and beam quality of laser array beams propagating in the atmosphere[J]. High Power Laser and Particle Beams, 2023, 35: 041007. doi: 10.11884/HPLPB202335.220411

大气湍流和热晕效应对列阵合成激光传输特性和光束质量影响的理论研究进展

doi: 10.11884/HPLPB202335.220411
基金项目: 国家自然科学基金项目(61775152, 61505130, 61475105, 61178070, 60778048)
详细信息
    作者简介:

    李晓庆,lixiaoqing912@sicnu.edu.cn

    通讯作者:

    季小玲,jiXL100@163.com

  • 中图分类号: O437.5

Theoretical research progress on the influence of atmospheric turbulence and thermal blooming on characteristics and beam quality of laser array beams propagating in the atmosphere

  • 摘要: 介绍了大气湍流效应和热晕效应对列阵合成激光传输特性和光束质量影响的理论研究进展。主要介绍了合成激光在大气中传输的解析和数值模拟研究方法,大气湍流效应对列阵合成光束的光强分布、远场发散角、方向性、曲率半径和湍流距离的影响,以及大气热晕效应对列阵合成光束的光强分布、传输效率、重心偏移、热晕时间尺度和焦移的影响。研究结果表明,大气湍流效应和热晕效应对合成激光光束质量的影响与光束合成方式、合成光束参数以及大气参数密切相关。
  • 图  1  大气湍流中部分相干H-G列阵光束的相对光强分布[54]

    Figure  1.  Relative intensity distribution of partially coherent H-G array beams [54]

    图  2  高斯-谢尔模型(GSM)列阵光束的远场发散角随光束数的变化[58]

    Figure  2.  Angular spread of GSM array beams versus the beam number [58]

    图  3  GSM列阵光束的二阶矩束宽随传输距离变化[58]

    Figure  3.  Mean-squared width of GSM array beams versus the propagation distance [58]

    图  4  高斯列阵光束的等效曲率半径随径向填充因子的变化[59]

    Figure  4.  Effective curvature radius of Gaussian array beams versus the radial fill-factor [59]

    图  5  GSM列阵光束的湍流距离随束腰宽度的变化[16]

    Figure  5.  Turbulence distance of GSM array beams versus the waist width [16]

    图  6  不同填充因子下,高斯列阵光束的光强分布[25]

    Figure  6.  For different values of fill factors, intensity distributions of Gaussian array beams[25]

    图  7  H-G列阵光束的光束重心偏移量随时间的变化[26]

    Figure  7.  Centriod position of H-G array beams versus time [26]

    图  8  到达稳态时间随(a)模式数和(b)光束间距的变化[26]

    Figure  8.  Steady-state time versus the mode order (a) and the radial fill factor (b) [26]

    图  9  H-G列阵光束的束宽随传输距离的变化[26]

    Figure  9.  Beam width of H-G array beams versus propagation distance[26]

  • [1] Lü Baida, Ma Hong. Coherent and incoherent combinations of off-axis Gaussian beams with rectangular symmetry[J]. Optics Communications, 1999, 171(4/6): 185-194.
    [2] 季小玲, 李晓庆. 高斯-谢尔模型列阵光束的远场发散角和远场辐射强度[J]. 物理学报, 2009, 58(7):4624-4629 doi: 10.3321/j.issn:1000-3290.2009.07.038

    Ji Xiaoling, Li Xiaoqing. The far-field divergence angle and the far-field radiant intensity distribution of Gaussian Schell-model array beams[J]. Acta Physica Sinica, 2009, 58(7): 4624-4629 doi: 10.3321/j.issn:1000-3290.2009.07.038
    [3] Lü Baida, Ma Hong. Coherent and incoherent off-axis Hermite–Gaussian beam combinations[J]. Applied Optics, 2000, 39(8): 1279-1289. doi: 10.1364/AO.39.001279
    [4] Ren Zhijun, Wu Qiong, Shi Yile, et al. Production of accelerating quad Airy beams and their optical characteristics[J]. Optics Express, 2014, 22(12): 15154-15164. doi: 10.1364/OE.22.015154
    [5] 饶瑞中. 现代大气光学[M]. 北京: 科学出版社, 2012

    Rao Ruizhong. Modern atmospheric optics[M]. Beijing: Science Press, 2012
    [6] Andrews L C, Phillips R L. Laser beam propagation through random media[M]. 2nd ed. Bellingham: SPIE Press, 2005.
    [7] 王英俭, 范承玉, 魏合理. 激光在大气和海水中传输及应用[M]. 北京: 国防工业出版社, 2015

    Wang Yingjian, Fan Chengyu, Wei Heli. Laser beam propagation and applications through the atmosphere and sea water[M]. Beijing: National Defense Industry Press, 2015
    [8] Sprangle P, Hafizi B, Ting A, et al. High-power lasers for directed-energy applications[J]. Applied Optics, 2015, 54(31): F201-F209. doi: 10.1364/AO.54.00F201
    [9] Wu Shuyun, Luo Xi, Li Xinyang. Adaptive optics for reduction of thermal blooming effects by the phase compensation[J]. Journal of Russian Laser Research, 2020, 41(4): 413-423. doi: 10.1007/s10946-020-09894-6
    [10] Weyrauch T, Vorontsov M A, Carhart G W, et al. Experimental demonstration of coherent beam combining over a 7 km propagation path[J]. Optics Letters, 2011, 36(22): 4455-4457. doi: 10.1364/OL.36.004455
    [11] Baykal Y. Field correlations of laser arrays in atmospheric turbulence[J]. Applied Optics, 2014, 53(7): 1284-1289. doi: 10.1364/AO.53.001284
    [12] Zhou Pu, Ma Yanxing, Wang Xiaolin, et al. Average intensity of a partially coherent rectangular flat-topped laser array propagating in a turbulent atmosphere[J]. Applied Optics, 2009, 48(28): 5251-5258. doi: 10.1364/AO.48.005251
    [13] Yuan Yangsheng, Cai Yangjian. Scintillation index of a flat-topped beam array in a weakly turbulent atmosphere[J]. Journal of Optics, 2011, 13: 125701. doi: 10.1088/2040-8978/13/12/125701
    [14] Wang Kuilong, Zhao Chengliang. Propagation properties of a radial phased-locked partially coherent anomalous hollow beam array in turbulent atmosphere[J]. Optics & Laser Technology, 2014, 57: 44-51.
    [15] Li Xiaoqing, Ji Xiaoling. Angular spread and directionality of the Hermite-Gaussian array beam propagating through atmospheric turbulence[J]. Applied Optics, 2009, 48(22): 4338-4347. doi: 10.1364/AO.48.004338
    [16] Li Xiaolei, Ji Xiaoling, Eyyuboğlu H T, et al. Turbulence distance of radial Gaussian Schell-model array beams[J]. Applied Physics B, 2010, 98(2): 557-565.
    [17] Gebhardt F G. Twenty-five years of thermal blooming: an overview[C]//Proceedings of SPIE 1221, Propagation of High-Energy Laser Beams Through the Earth’s Atmosphere. 1990: 2-25.
    [18] Smith D C. High-power laser propagation: Thermal blooming[J]. Proceedings of the IEEE, 1977, 65(12): 1679-1714. doi: 10.1109/PROC.1977.10809
    [19] Fleck J A, Morris J R, Feit M D. Time-dependent propagation of high energy laser beams through the atmosphere[J]. Applied Physics, 1976, 10(2): 129-160. doi: 10.1007/BF00896333
    [20] 强希文, 王铁良, 吴乃清. 多光束激光大气传输[J]. 光电子技术, 1999, 19(3):167-172 doi: 10.19453/j.cnki.1005-488x.1999.03.004

    Qiang Xiwen, Wang Tieliang, Wu Naiqing. Multi-laser-beams atmospheric propagation[J]. Optoelectronic Technology, 1999, 19(3): 167-172 doi: 10.19453/j.cnki.1005-488x.1999.03.004
    [21] Banakh V A, Falits A V. Numerical simulation of propagation of laser beams formed by multielement apertures in a turbulent atmosphere under thermal blooming[J]. Atmospheric and Oceanic Optics, 2013, 26(6): 455-465. doi: 10.1134/S102485601306002X
    [22] Spencer M F, Hyde IV M W. Phased beam projection from tiled apertures in the presence of turbulence and thermal blooming[C]//Proceedings of SPIE 8877, Unconventional Imaging and Wavefront Sensing 2013. 2013: 887703.
    [23] Zhang Yuqiu, Hou Tianyue, Chang Hongxiang, et al. Thermal blooming effect and the scaling laws of partial spatially coherent beam array propagating through the atmosphere[J]. Results in Physics, 2021, 26: 104444. doi: 10.1016/j.rinp.2021.104444
    [24] Qiu Die, Tian Boyu, Ting He, et al. Mitigation of thermal blooming by rotating laser beams in the atmosphere[J]. Applied Optics, 2021, 60(27): 8458-8465. doi: 10.1364/AO.438485
    [25] Li Xiaoqing, Cao Jianyong, Ding Zhoulin, et al. Influence of fill factors on the thermal blooming of array laser beams in the air[J]. Optik, 2019, 182: 314-323. doi: 10.1016/j.ijleo.2018.12.161
    [26] Ding Zhoulin, Li Xiaoqing, Cao Jianyong, et al. Influence of thermal blooming on the beam quality of an array of Hermite–Gaussian beams propagating in the atmosphere[J]. Applied Optics, 2020, 59(34): 10944-10952. doi: 10.1364/AO.405980
    [27] 李晓庆, 曹建勇, 丁洲林, 等. 列阵平顶光束大气传输的热晕效应[J]. 光学学报, 2019, 39:0126020 doi: 10.3788/AOS201939.0126020

    Li Xiaoqing, Cao Jianyong, Ding Zhoulin, et al. Thermal blooming effect of flat-topped laser beam array propagating through atmosphere[J]. Acta Optica Sinica, 2019, 39: 0126020 doi: 10.3788/AOS201939.0126020
    [28] 刘泽金, 周朴, 许晓军, 等. 高平均功率光纤激光相干合成[M]. 北京: 国防工业出版社, 2016

    Liu Zejin, Zhou Pu, Xu Xiaojun, et al. Coherent beam combining of high average power fiber lasers[M]. Beijing: National Defense Industry Press, 2016
    [29] Shirai T, Dogariu A, Wolf E. Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence[J]. Journal of the Optical Society of America A, 2003, 20(6): 1094-1102. doi: 10.1364/JOSAA.20.001094
    [30] Ji Xiaoling, Zhang Entao, Lü Baida. Changes in the spectrum of Gaussian Schell-model beams propagating through turbulent atmosphere[J]. Optics Communications, 2006, 259(1): 1-6. doi: 10.1016/j.optcom.2005.08.019
    [31] 季小玲, 李晓庆. 湍流对离轴列阵高斯光束相干与非相干合成的影响[J]. 物理学报, 2008, 57(12):7674-7679 doi: 10.7498/aps.57.7674

    Ji Xiaoling, Li Xiaoqing. Influence of turbulence on the coherent and incoherent combinations of off-axis Gaussian beams[J]. Acta Physica Sinica, 2008, 57(12): 7674-7679 doi: 10.7498/aps.57.7674
    [32] Ji Xiaoling, Zhang E T, Lü B D. Propagation of multi-Gaussian beams in incoherent combination through turbulent atmosphere and their beam quality[J]. Journal of Modern Optics, 2006, 53(15): 2111-2127. doi: 10.1080/09500340600799106
    [33] Dragoman D. Higher-order moments of the Wigner distribution function in first-order optical systems[J]. Journal of the Optical Society of America. A, 1994, 11(10): 2643-2646. doi: 10.1364/JOSAA.11.002643
    [34] Chu Xiuxiang. Evolution of an Airy beam in turbulence[J]. Optics Letters, 2011, 36(14): 2701-2703. doi: 10.1364/OL.36.002701
    [35] Li Xiaoqing, Ji Xiaoling. Propagation of higher-order intensity moments through an optical system in atmospheric turbulence[J]. Optics Communications, 2013, 298-299: 1-7. doi: 10.1016/j.optcom.2013.02.012
    [36] Dan Youquan, Zhang Bin. Second moments of partially coherent beams in atmospheric turbulence[J]. Optics Letters, 2009, 34(5): 563-565. doi: 10.1364/OL.34.000563
    [37] Wang S C H, Plonus M A, Ouyang C F. Irradiance scintillations of a partially coherent source in extremely strong turbulence[J]. Applied Optics, 1979, 18(8): 1133-1135. doi: 10.1364/AO.18.001133
    [38] Leader J C. Atmospheric propagation of partially coherent radiation[J]. Journal of the Optical Society of America, 1978, 68(2): 175-185. doi: 10.1364/JOSA.68.000175
    [39] Wigner E. On the quantum correction for thermodynamic equilibrium[J]. Physical Review, 1932, 40(5): 749-759. doi: 10.1103/PhysRev.40.749
    [40] Walther A. Radiometry and coherence[J]. Journal of the Optical Society of America, 1968, 58(9): 1256-1259. doi: 10.1364/JOSA.58.001256
    [41] Ozaktas H M, Kutay M A, Zalevsky Z. The fractional Fourier transform with applications in optics and signal processing[M]. New York: John Wiley & Sons, 2000.
    [42] Martínez-Herrero R, Mejías P M, Weber H. On the different definitions of laser beam moments[J]. Optical and Quantum Electronics, 1993, 25(6): 423-428. doi: 10.1007/BF00420584
    [43] Weber H. Propagation of higher-order intensity moments in quadratic-index media[J]. Optical and Quantum Electronics, 1992, 24(9): S1027-S1049. doi: 10.1007/BF01588604
    [44] Li Xiaoqing, Ji Xiaoling, Wang Tao, et al. Matrix formulation of higher-order moments of partially coherent beams propagating through atmospheric turbulence along a slanted path[J]. Journal of Optics, 2013, 15: 125720. doi: 10.1088/2040-8978/15/12/125720
    [45] Yang Ting, Ji X Liaoling, Li Xiaoqing, et al. Changes of skewness and sharpness of partially coherent decentered annular beams on propagation[J]. Optics Communications, 2016, 359: 146-156. doi: 10.1016/j.optcom.2015.09.019
    [46] 江少恩, 孙景文. 激光大气传输非线性效应数值模拟与分析[J]. 中国激光, 1996, 23(2):144-150 doi: 10.3321/j.issn:0258-7025.1996.02.011

    Jiang Shaoen, Sun Jingwen. Simulation and analysis of nonlinear effect of laser atmospheric propagation[J]. Chinese Journal of Lasers, 1996, 23(2): 144-150 doi: 10.3321/j.issn:0258-7025.1996.02.011
    [47] Herman B J, Strugala L A. Method for inclusion of low-frequency contributions in numerical representation of atmospheric turbulence[C]//Proceedings of SPIE. 1990: 183-192.
    [48] Dai Guangming, Mahajan V N. Zernike annular polynomials and atmospheric turbulence[J]. Journal of the Optical Society of America A, 2007, 24(1): 139-155. doi: 10.1364/JOSAA.24.000139
    [49] Gebhardt F G, Smith D C. Self-induced thermal distortion in the near field for a laser beam in a moving medium[J]. IEEE Journal of Quantum Electronics, 1971, 7(2): 63-73. doi: 10.1109/JQE.1971.1076598
    [50] 陈栋泉, 李有宽, 徐锡申, 等. 激光大气传输中热晕的数值模拟[J]. 强激光与粒子束, 1993, 5(2):243-252

    Chen Dongquan, Li Youkuan, Xu Xishen, et al. Numerical simulation of thermal blooming in atmospheric laser propagation[J]. High Power Laser and Particle Beams, 1993, 5(2): 243-252
    [51] Young C Y, Gilchrest Y V, Macon B R. Turbulence induced beam spreading of higher order mode optical waves[J]. Optical Engineering, 2002, 41(5): 1097-1103. doi: 10.1117/1.1465427
    [52] Cai Yangjian, He Sailing. Average intensity and spreading of an elliptical Gaussian beam propagating in a turbulent atmosphere[J]. Optics Letters, 2006, 31(5): 568-570. doi: 10.1364/OL.31.000568
    [53] Eyyuboğlu H T, Baykal Y, Sermutlu E. Convergence of general beams into Gaussian intensity profiles after propagation in turbulent atmosphere[J]. Optics Communications, 2006, 265(2): 399-405. doi: 10.1016/j.optcom.2006.03.071
    [54] Li Xiaoqing, Chen Xiaowen, Ji Xiaoling. Influence of atmospheric turbulence on the propagation of superimposed partially coherent Hermite-Gaussian beams[J]. Optics Communications, 2009, 282(1): 7-13. doi: 10.1016/j.optcom.2008.09.063
    [55] Mahdieh M H. Numerical approach to laser beam propagation through turbulent atmosphere and evaluation of beam quality factor[J]. Optics Communications, 2008, 281(13): 3395-3402. doi: 10.1016/j.optcom.2008.02.040
    [56] Dan Youquan, Zhang Bin. Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere[J]. Optics Express, 2008, 16(20): 15563-15575. doi: 10.1364/OE.16.015563
    [57] Shirai T, Dogariu A, Wolf E. Directionality of Gaussian Schell-model beams propagating in atmospheric turbulence[J]. Optics Letters, 2003, 28(8): 610-612. doi: 10.1364/OL.28.000610
    [58] Ji Xiaoling, Pu Zhengcai. Angular spread of Gaussian Schell-model array beams propagating through atmospheric turbulence[J]. Applied Physics B, 2008, 93(4): 915-923. doi: 10.1007/s00340-008-3256-3
    [59] Ji Xiaoling, Eyyuboğlu H T, Baykal Y. Influence of turbulence on the effective radius of curvature of radial Gaussian array beams[J]. Optics Express, 2010, 18(7): 6922-6928. doi: 10.1364/OE.18.006922
    [60] 吕百达. 激光光学[M]. 3版. 北京: 高等教育出版社, 2003

    Lü Baida. Laser optics[M]. 3rd ed. Beijing: Higher Education Press, 2003
    [61] Wolf E, Collett E. Partially coherent sources which produce the same far-field intensity distribution as a laser[J]. Optics Communications, 1978, 25(3): 293-296. doi: 10.1016/0030-4018(78)90131-1
    [62] 季小玲. 大气湍流对激光束传输特性的影响[J]. 四川师范大学学报(自然科学版), 2012, 35(1):127-136

    Ji Xiaoling. Influence of the atmospheric turbulence on propagation properties of laser beams[J]. Journal of Sichuan Normal University (Natural Science), 2012, 35(1): 127-136
    [63] Porras M A, Alda J, Bernabeu E. Complex beam parameter and ABCD law for non-Gaussian and nonspherical light beams[J]. Applied Optics, 1992, 31(30): 6389-6402. doi: 10.1364/AO.31.006389
    [64] Ricklin J C, Davidson F M. Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication[J]. Journal of the Optical Society of America A, 2002, 19(9): 1794-1802. doi: 10.1364/JOSAA.19.001794
    [65] Gbur G, Wolf E. Spreading of partially coherent beams in random media[J]. Journal of the Optical Society of America A, 2002, 19(8): 1592-1598. doi: 10.1364/JOSAA.19.001592
    [66] 陆璐, 季小玲, 邓金平, 等. 非Kolmogorov大气湍流对高斯列阵光束扩展的影响[J]. 物理学报, 2014, 63:014207 doi: 10.7498/aps.63.014207

    Lu Lu, Ji Xiaoling, Deng Jinping, et al. Influence of non-Kolmogorov turbulence on the spreading of Gaussian array beams[J]. Acta Physica Sinica, 2014, 63: 014207 doi: 10.7498/aps.63.014207
    [67] Van Zandt N R, Cusumano S J, Bartell R J, et al. Comparison of coherent and incoherent laser beam combination for tactical engagements[J]. Optical Engineering, 2012, 51: 104301. doi: 10.1117/1.OE.51.10.104301
    [68] Zhou Pu, Wang Xiaolin, Ma Yanxing, et al. Optimal truncation of element beam in a coherent fiber laser array[J]. Chinese Physics Letters, 2009, 26: 044206. doi: 10.1088/0256-307X/26/4/044206
    [69] Siegman A E. How to (Maybe) measure laser beam quality[C]//OSA Trends in Optics and Photonic. 1998: 184-199.
    [70] 万敏, 苏毅. 大气热晕效应引起的激光焦移的计算与分析[J]. 计算物理, 2002, 19(5):449-452 doi: 10.3969/j.issn.1001-246X.2002.05.016

    Wan Min, Su Yi. Computation and analysis on focus shift of laser caused by atmospheric thermal blooming[J]. Chinese Journal of Computational Physics, 2002, 19(5): 449-452 doi: 10.3969/j.issn.1001-246X.2002.05.016
  • 加载中
图(9)
计量
  • 文章访问数:  506
  • HTML全文浏览量:  177
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-27
  • 修回日期:  2023-01-16
  • 录用日期:  2023-03-22
  • 网络出版日期:  2023-04-07
  • 刊出日期:  2023-03-30

目录

    /

    返回文章
    返回