留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳秒脉冲电压下两种自触发开关的设计与实验研究

崔光曦 李俊娜 王海洋 陈旭良 王永亮 刘建 李楚男 李奇胜 石凌

崔光曦, 李俊娜, 王海洋, 等. 纳秒脉冲电压下两种自触发开关的设计与实验研究[J]. 强激光与粒子束, 2023, 35: 075003. doi: 10.11884/HPLPB202335.220415
引用本文: 崔光曦, 李俊娜, 王海洋, 等. 纳秒脉冲电压下两种自触发开关的设计与实验研究[J]. 强激光与粒子束, 2023, 35: 075003. doi: 10.11884/HPLPB202335.220415
Cui Guangxi, Li Junna, Wang Haiyang, et al. Design and experimental study of two types of low jitter self-triggered switches under nanosecond pulse voltage[J]. High Power Laser and Particle Beams, 2023, 35: 075003. doi: 10.11884/HPLPB202335.220415
Citation: Cui Guangxi, Li Junna, Wang Haiyang, et al. Design and experimental study of two types of low jitter self-triggered switches under nanosecond pulse voltage[J]. High Power Laser and Particle Beams, 2023, 35: 075003. doi: 10.11884/HPLPB202335.220415

纳秒脉冲电压下两种自触发开关的设计与实验研究

doi: 10.11884/HPLPB202335.220415
基金项目: 国家自然科学基金项目(52177157)
详细信息
    作者简介:

    崔光曦,1308279743@qq.com

    通讯作者:

    李俊娜, uvlina@126.com

  • 中图分类号: TM89

Design and experimental study of two types of low jitter self-triggered switches under nanosecond pulse voltage

  • 摘要: 降低纳秒脉冲电压下气体开关的抖动对电磁脉冲模拟装置输出稳定性具有重要意义。特别在受条件约束、外触发不便的条件下,自触发开关抖动的降低值得关注。设计了两种自触发开关,包含阴极刻槽开关和预电离开关,并搭建了纳秒脉冲实验平台,分别在40 ns、70 ns 与120 ns三种脉冲前沿下测量了两种开关的击穿电压、时延等参数,通过数据统计与处理,获得了两种开关的击穿电压及时间抖动。实验结果表明:通过阴极刻槽控制发射或者阴极预电离注入的方式均可有效降低开关的击穿抖动;在三种前沿的脉冲电压下两种开关的击穿抖动均在1~1.8 ns之间;在40 ns和70 ns前沿脉冲作用下,阴极刻槽的开关击穿抖动更低,可小于1.2 ns,击穿电压分散性小于1.29%;在120 ns前沿脉冲作用下,阴极预电离开关击穿抖动更低,可小于1.6 ns。
  • 图  1  刻槽自触发开关与预电离自触发开关结构图

    Figure  1.  Structure diagram of grooved self-triggered switch and preionization self-triggered switch

    图  2  两种开关的电场分布图

    Figure  2.  Electric field distribution diagram of two switches

    图  3  预电离自触发开关等效电路及仿真波形

    Figure  3.  Equivalent circuit and simulation waveforms of the preionization self-triggered switch

    图  4  实验平台示意图( 1:6级Marx发生器, 2:调波电感, 3:自击穿气体开关, 4:电阻分压器, 5:间隔盆形绝缘子, 6:实验腔体)

    Figure  4.  Schematic diagram of experimental platform (1: 6-stage Marx generator, 2: wave regulating inductance, 3: self breaking gas switch, 4: resistance voltage divider, 5: spacing basin insulator, 6: experimental chamber)

    图  5  Marx等效电路及开关电压仿真波形

    Figure  5.  Marx equivalent circuit and switching voltage simulation waveforms

    图  6  开关击穿典型时域波形

    Figure  6.  Typical time-domain waveforms of switch breakdown

    图  7  40 ns,70 ns与120 ns前沿下刻槽开关的击穿时延与电压

    Figure  7.  Breakdown delay and voltage of the cathode grooved switch at 40 ns, 70 ns and 120 ns rise time

    图  8  40 ns,70 ns与120ns前沿下预电离开关的击穿时延与电压

    Figure  8.  Breakdown delay and voltage of the preionization switch at 40 ns, 70 ns and 120 ns rise time

    图  9  70 ns与120 ns前沿的三种开关抖动对比

    Figure  9.  Comparison of three kinds of switch jitter at the rise time of 70ns and 120ns

    表  1  刻槽开关击穿特性数据(抖动与电压分散性)

    Table  1.   Cathode grooved switch breakdown characteristic data (voltage dispersion and jitter)

    p/MPa voltage
    dispersion/%
    breakdown time
    delay jitter/ns
    p/MPa voltage
    dispersion/%
    breakdown time
    delay jitter/ns
    p/MPa voltage
    dispersion/%
    breakdown time
    delay jitter/ns
    tr=~40 ns tr=~70 ns tr=~120 ns
    0.70 0.85 1.08 0.65 1.06 1.18 0.64 1.22 1.84
    0.84 0.93 1.11 0.80 0.82 0.90 0.80 0.89 1.76
    1.00 0.83 1.03 0.95 0.99 1.07 0.98 1.02 1.75
    1.16 1.29 0.86 1.06 0.75 0.91 1.22 1.18 1.77
    1.27 1.01 0.87 1.24 0.88 1.05 1.38 1.03 1.47
    下载: 导出CSV

    表  2  预电离开关击穿特性数据(抖动与电压分散性)

    Table  2.   Preionization switch breakdown characteristic data (voltage dispersion and jitter)

    p/MPa voltage
    dispersion/%
    breakdown time
    delay jitter/ns
    p/MPa voltage
    dispersion/%
    breakdown time
    delay jitter/ns
    p/MPa voltage
    dispersion/%
    breakdown time
    delay jitter/ns
    tr=~40 ns tr=~70 ns tr=~120 ns
    0.74 0.79 1.34 0.71 1.27 1.48 0.69 1.37 1.60
    0.88 1.08 1.32 0.81 1.26 1.56 0.80 1.00 1.39
    1.04 1.02 1.21 0.93 0.84 1.04 0.91 0.97 1.52
    1.13 0.74 0.84 1.04 1.04 1.12 1.04 1.35 1.57
    1.25 0.77 0.89 1.18 1.25 1.40 1.17 1.26 1.59
    下载: 导出CSV
  • [1] 邵涛, 孙广生, 严萍, 等. 纳秒脉冲气体放电机理研究现状[J]. 高电压技术, 2004, 30(7):40-42 doi: 10.3969/j.issn.1003-6520.2004.07.017

    Shao Tao, Sun Guangsheng, Yan Ping, et al. Overview of nanosecond-pulse gas breakdown mechanics[J]. High Voltage Engineering, 2004, 30(7): 40-42 doi: 10.3969/j.issn.1003-6520.2004.07.017
    [2] 邵涛, 严萍, 张适昌, 等. 纳秒脉冲气体放电机理探讨[J]. 强激光与粒子束, 2008, 20(11):1928-1932

    Shao Tao, Yan Ping, Zhang Shichang, et al. Review on nanosecond-pulse discharge mechanism in gases[J]. High Power Laser and Particle Beams, 2008, 20(11): 1928-1932
    [3] 刘锡三. 高功率脉冲技术[M]. 北京: 国防工业出版社, 2005

    Liu Xisan. High pulsed power technology[M]. Beijing: National Defense Industry Press, 2005
    [4] 赵智大. 高电压技术[M]. 3版. 北京: 中国电力出版社, 2013

    Zhao Zhida. High voltage technique[M]. 3rd ed. Beijing: China Electric Power Press, 2013
    [5] 丁培, 丁健刚, 姚晓飞, 等. 雷电冲击电压下串联空气球隙击穿特性[J]. 高电压技术, 2021, 47(11):4072-4077 doi: 10.13336/j.1003-6520.hve.20200620

    Ding Pei, Ding Jian’gang, Yao Xiaofei, et al. Breakdown characteristics of series connected ball air gaps under lightening impulse voltage[J]. High Voltage Engineering, 2021, 47(11): 4072-4077 doi: 10.13336/j.1003-6520.hve.20200620
    [6] Gilman C, Lam S K, Naff J T, et al. Design and performance of the FEMP-2000: a fast risetime, 2 MV EMP pulser[C]//Proceedings of the 12th IEEE International Pulsed Power Conference. 1999: 1437-1440.
    [7] Wang Tianchi, Du Yingchao, Chen Wei, et al. A low-jitter self-triggered spark-discharge pre-ionization switch: primary research on its breakdown characteristics and working mechanisms[J]. Plasma Science and Technology, 2021, 23: 115508. doi: 10.1088/2058-6272/ac2420
    [8] 李俊娜, 邱爱慈, 蒯斌, 等. 自耦式紫外预电离开关特性[J]. 强激光与粒子束, 2008, 20(6):994-998

    Li Junna, Qiu Aici, Kuai Bin, et al. Characteristics of capacitance-resistance coupling UV illumination switch[J]. High Power Laser and Particle Beams, 2008, 20(6): 994-998
    [9] Ramirez J J. Effect of electrode surface conditions on the self-breakdown strength and jitter of a high-pressure pulsed gas switch[J]. Journal of Applied Physics, 1976, 47(5): 1925-1928. doi: 10.1063/1.322914
    [10] Levinson S J, Kunhardt E E. Investigation of the statistical and formative time lags associated with the breakdown of a gas in a gap at high overvoltage[J]. IEEE Transactions on Plasma Science, 1982, 10(4): 266-270. doi: 10.1109/TPS.1982.4316187
    [11] 程新兵, 刘金亮, 陈蒸, 等. 高电压长寿命型气体火花开关的设计及初步研究[J]. 强激光与粒子束, 2008, 20(10):1753-1756

    Cheng Xinbing, Liu Jinliang, Chen Zheng, et al. Design and primary experiment of high voltage long-life gas spark switch[J]. High Power Laser and Particle Beams, 2008, 20(10): 1753-1756
    [12] 李黎, 鲍超斌, 冯希波, 等. 纳秒快脉冲下气体开关的过电压击穿[J]. 中国电机工程学报, 2013, 33(7):185-191 doi: 10.13334/j.0258-8013.pcsee.2013.07.025

    Li Li, Bao Chaobin, Feng Xibo, et al. Overvoltage breakdown of air-insulated gap under fast nanosecond-pulse[J]. Proceedings of the CSEE, 2013, 33(7): 185-191 doi: 10.13334/j.0258-8013.pcsee.2013.07.025
    [13] Martin T H. Pulsed charged gas breakdown[C]//Proceedings of the 5th IEEE Pulsed Power Conference. 1985: 74-83.
    [14] Martin T H. An empirical formula for gas switch breakdown delay[C]//Proceedings of the 7th Pulsed Power Conference. 1989: 73-79.
    [15] 严璋, 朱德恒. 高电压绝缘技术[M]. 3版. 北京: 中国电力出版社, 2015

    Yan Zhang, Zhu Deheng. High voltage insulation technology[M]. 3rd ed. Beijing: China Electric Power Press, 2015
    [16] 李俊娜, 何石, 邱爱慈, 等. 自触发开关在不同脉冲前沿下的击穿特性[J]. 高电压技术, 2022, 48(4):1590-1596 doi: 10.13336/j.1003-6520.hve.20210393

    Li Junna, He Shi, Qiu Aici, et al. Breakdown characteristics of self-triggered switches under different voltage rise-time[J]. High Voltage Engineering, 2022, 48(4): 1590-1596 doi: 10.13336/j.1003-6520.hve.20210393
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  398
  • HTML全文浏览量:  141
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-21
  • 修回日期:  2023-03-21
  • 录用日期:  2023-03-21
  • 网络出版日期:  2023-04-07
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回