留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ICF装置靶场关键材料的辐照效应研究进展

冯青屹 祖小涛 刘春明 黎波 孙莉杰 吴钰铃 向霞 袁晓东 邓洪祥 李莉 于景侠 徐世珍 郑万国

冯青屹, 祖小涛, 刘春明, 等. ICF装置靶场关键材料的辐照效应研究进展[J]. 强激光与粒子束, 2023, 35: 091001. doi: 10.11884/HPLPB202335.230007
引用本文: 冯青屹, 祖小涛, 刘春明, 等. ICF装置靶场关键材料的辐照效应研究进展[J]. 强激光与粒子束, 2023, 35: 091001. doi: 10.11884/HPLPB202335.230007
Feng Qingyi, Zu Xiaotao, Liu Chunming, et al. Progress of research on irradiation effects in key materials in ICF facilities[J]. High Power Laser and Particle Beams, 2023, 35: 091001. doi: 10.11884/HPLPB202335.230007
Citation: Feng Qingyi, Zu Xiaotao, Liu Chunming, et al. Progress of research on irradiation effects in key materials in ICF facilities[J]. High Power Laser and Particle Beams, 2023, 35: 091001. doi: 10.11884/HPLPB202335.230007

ICF装置靶场关键材料的辐照效应研究进展

doi: 10.11884/HPLPB202335.230007
基金项目: 国家自然科学基金委-中国工程物理研究院联合基金重点项目(U1830204);国家自然科学基金青年基金项目 (12105037)
详细信息
    作者简介:

    冯青屹,fengqingyi@csj.uestc.edu.cn

    通讯作者:

    祖小涛,xtzu@uestc.edu.cn

    郑万国,wgzheng_caep@sina.com

  • 中图分类号: TL632+.1

Progress of research on irradiation effects in key materials in ICF facilities

  • 摘要:

    从惯性约束聚变(ICF)装置中靶场关键材料易受辐照损伤、从而限制材料使用寿命和装置稳定运行的现实问题出发,总结归纳了有关不锈钢、铝合金、终端光学组件三大类靶场关键材料的辐照效应研究进展,详细介绍了靶室内高能中子束、γ射线、X射线等高能粒子和射线引起靶室第一壁材料出现烧蚀、中子活化等辐照损伤问题,以及靶室环境对关键材料的影响和防护处理。此外,还阐述了打靶试验中所产生的复杂辐射环境、基频与三倍频激光对靠近靶室的终端光学组件所产生的各类辐照损伤现象和相关作用机理。

  • 图  1  NIF靶球[7-8]

    Figure  1.  NIF target chamber[7-8]

    图  2  靶室第一壁材料和终端光学组件面临的主要威胁[2]

    Figure  2.  Main threats faced by first wall and FOA of the target chamber[2]

    图  3  Nova X射线对不同材料的烧蚀情况[17-18]

    Figure  3.  X-ray ablation in different materials in Nova[17-18]

    图  4  不同激光能量密度辐照下,铝合金5083烧蚀坑形貌三维图像[19]

    Figure  4.  Three-dimensional images of ablation morphology on Al-5083 irradiated by different laser energy densities[19]

    图  5  相同功率密度下烧蚀形貌对比[19]

    Figure  5.  Comparison of ablation morphology under the same power density[19]

    图  6  不锈钢在不同激光能量密度下的烧蚀坑形貌图[19]

    Figure  6.  Ablation morphology of stainless steel under different laser energy densities[19]

    图  7  不锈钢和铝合金(Al-5083)烧蚀深度(500个脉冲)随激光能量密度的关系[19]

    Figure  7.  Relationship between ablation depth (500 pulses) and laser energy density of stainless steel and Al-5083[19]

    图  8  几种材料的激光烧蚀情况[20]

    Figure  8.  Laser ablation of several materials[20]

    图  9  几种第一壁材料经10 a、1200 MJ/a激光聚变能量辐照后的剂量当量率随时间的变化情况[18]

    Figure  9.  Personnel dose rate of first wall materials inside the target chamber after a 20-MJ ignition shot following 10 a of 1200-MJ/a yields[18]

    图  10  狗腿型不锈钢百叶窗结构[23]

    Figure  10.  Dog-legged stainless steel louver[23]

    图  11  终端光学组件构成[10]

    Figure  11.  Composition of FOA[10]

    图  12  金属离子含量与激光损伤阈值的关系[68]

    Figure  12.  Relationship between metal ion content and laser damage threshold[68]

    图  13  中子和γ辐照对KDP/DKDP 晶体光学吸收的影响[1]

    Figure  13.  Effects of neutron and gamma irradiations on optical absorption of KDP/DKDP crystal optics[1]

    图  14  NIF装置光学元件激光损伤阈值提升历程[98]

    Figure  14.  LIDT improvement of fused silica in NIF[98]

    图  15  熔石英体缺陷和表面缺陷的主要光吸收/PL激发带和发射带[131]

    Figure  15.  Major optical absorption/luminescence excitation bands and emission bands of defect centers in bulk (top) and surface (bottom) of fused silica[131]

    图  16  熔石英样品表面位于452 nm的PL强度和氧硅比例变化[153]

    Figure  16.  PL intensity at 452 nm and O:Si ratio of the silica optic samples as a function of pulse number[153]

    图  17  不同氧硅比例下,熔石英的光学吸收情况[155]

    Figure  17.  Optical absorption of fused silica under different (RO:Si) [155]

    图  18  氧空位缺陷浓度与355 nm吸收峰的变化关系[155]

    Figure  18.  Relationship between neutral oxygen-vacancy (NOV) defect concentration and absorption coefficient at 355 nm[155]

    图  19  光学元件在辐射前后吸收系数的变化情况[52]

    Figure  19.  Absorption coefficients of several SiO2 materials before and after radiation[52]

    图  20  辐射产生损伤的机理[52]

    Figure  20.  Radiation damage mechanism of SiO2 materials[52]

    图  21  中子和γ射线对石英样品的吸收光谱的影响

    Figure  21.  Neutrons and γ radiation-induced absorption spectrum of quartz samples

    图  22  FS1和FQ1熔石英透过率随辐照时间的变化情况[52]

    Figure  22.  Predicted transmittance of NIF final focus lens versus time for FS1 and FQ1 fused silica[52]

    图  23  光学薄膜和衬底产生激光辐照损伤的原理图及相关影响因素

    Figure  23.  Schematic diagram and related influence factors of laser induced damage in optical thin films and substrates

    图  24  不同激光能量密度条件下化学膜的损伤形貌[9]

    Figure  24.  Damage morphology of porous silica under different laser energy densities[9]

    图  25  显微镜观测到的损伤形貌[162]

    Figure  25.  Microscopic observation of damage morphology[162]

    (a) physical film    (b) chemical film    (c) zoom in the image of physical film

    图  26  溶胶凝胶酸性膜和碱性膜损伤形貌[166]

    Figure  26.  Damage morphology of acid and alkaline sol-gel films[166]

    图  27  γ射线辐照对薄膜表面疏水性影响的动态过程

    Figure  27.  Dynamic process of the gamma irradiation effect on the porous silica surface hydrophobicity

    图  28  中子辐照前后不同孔隙率化学膜中的配位数分布和缺陷百分比(Si3+和NBO)[181]

    Figure  28.  Coordination number distribution and defect percentage (Si3+ and NBO) in porous silica at different porosities before and after neutron irradiation[181]

    图  29  中子辐照前后,不同孔隙率下化学膜弹性模量和泊松比变化[181]

    Figure  29.  Elastic modulus of the porous silica before and after neutron irradiation plotted as a function of porosity[181]

    图  30  中子辐照前后不同孔隙率的化学膜透射率变化

    Figure  30.  Transmissivity of porous silica with different porosities before and after neutron irradiation

    图  31  不同剂量中子和γ辐照后,化学膜的热导率变化

    Figure  31.  Thermal conductivities of porous silica with different neutrons and gamma irradiation doses

    图  32  不同剂量中子和伽马辐照后,化学膜的透射率变化

    Figure  32.  Transmissivity of porous silica with different neutron and gamma irradiation doses

    表  1  不锈钢百叶窗光束吸收器的捕获效率[20]

    Table  1.   Capture efficiency of stainless steel louver

    fluence/
    (J/cm2)
    total expected iron mass
    generation/(μg/cm2)
    iron mass captured
    on FEP/(μg/cm2 )
    calculated capture
    efficiency/%
    rangeaveragerangeaverage
    5,7,11 40.5 3.6~18.3 9.2 54~91 77
    14 19.5 3.7~11.8 7.6 39~81 61
    12 19.0 2.2~7.8 5.5 59~88 71
    下载: 导出CSV
  • [1] Marshall C D, Speth J A, DeLoach L D, et al. Penetrating radiation impact on NIF final optic components[C]//Proceedings of SPIE 3047, Solid State Lasers for Application to Inertial Confinement Fusion: Second Annual International Conference. 1997: 343-363.
    [2] Schirmann D, Bianchi L, Courchinoux R, et al. LMJ target area design and engineering physics inside the LMJ target chamber[C]//Proceedings of SPIE 3492, Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion. 1999: 710-717.
    [3] Khater H, Epperson P, Thacker R, et al. Impact of target-material activation on personnel exposure and radioactive contamination in the National Ignition Facility[J]. IEEE Transactions on Plasma Science, 2010, 38(3): 383-387. doi: 10.1109/TPS.2009.2038475
    [4] Abdou M, Besenbruch G, Duke J, et al. Chamber and target technology development for inertial fusion energy[R]. Livermore: Lawrence Livermore National Laboratory, 1999.
    [5] Kaufmann M, Neu R. Tungsten as first wall material in fusion devices[J]. Fusion Engineering and Design, 2007, 82(5/14): 521-527.
    [6] Latkowski J F, Abbott R P, Aceves S, et al. Chamber design for the laser inertial fusion energy (LIFE) engine[J]. Fusion Science and Technology, 2011, 60(1): 54-60. doi: 10.13182/FST10-318
    [7] Moses E I. Ignition on the National Ignition Facility: a path towards inertial fusion energy[J]. Nuclear Fusion, 2009, 49: 104022. doi: 10.1088/0029-5515/49/10/104022
    [8] Kaufman M I, Celeste J R, Frogget B C, et al. Optomechanical considerations for the VISAR diagnostic at the National Ignition Facility (NIF)[C]//Proceedings of SPIE 6289, Novel Optical Systems Design and Optimization IX. 2006: 628906.
    [9] 郑万国, 祖小涛, 袁晓东, 等. 高功率激光装置的负载能力及其相关物理问题[M]. 北京: 科学出版社, 2014

    Zheng Wanguo, Zu Xiaotao, Yuan Xiaodong, et al. Damage resistance and physical problems of high power laser facilities[M]. Beijing: Science Press, 2014
    [10] Wegner P J, Auerbach J M, Biesiada Jr T A, et al. NIF final optics system: frequency conversion and beam conditioning[C]//Proceedings of SPIE 5341, Optical Engineering at the Lawrence Livermore National Laboratory II: The National Ignition Facility. 2004: 180-189.
    [11] Campbell J H, Hawley-Fedder R A, Stolz C J, et al. NIF optical materials and fabrication technologies: an overview[C]//Proceedings of SPIE 5341, Optical Engineering at the Lawrence Livermore National Laboratory II: The National Ignition Facility. 2004: 84-101.
    [12] Manes K R, Spaeth M L, Adams J J, et al. Damage mechanisms avoided or managed for NIF large optics[J]. Fusion Science and Technology, 2016, 69(1): 146-249. doi: 10.13182/FST15-139
    [13] Burnham A, Peterson P F, Scott J M. Final report for NIF chamber dynamics studies[R]. Livermore: Lawrence Livermore National Laboratory, 1998.
    [14] Burnham A K, Tobin M T, Anderson A T, et al. Development and evaluation of first wall materials for the National Ignition Facility[J]. Fusion Technology, 1996, 30(3P2A): 730-735. doi: 10.13182/FST96-A11963022
    [15] Dubern C, Bruneel J L, Chadeyron P, et al. Laser damage study on the first-wall LMJ target chamber[C]//Proceedings of SPIE 3578, Laser-Induced Damage in Optical Materials: 1998. 1999: 753-764.
    [16] Sethian J D, Raffray A R, Latkowski J, et al. An overview of the development of the first wall and other principal components of a laser fusion power plant[J]. Journal of Nuclear Materials, 2005, 347(3): 161-177. doi: 10.1016/j.jnucmat.2005.08.019
    [17] Anderson A T, Peterson P F. Experimental methods for measuring X-ray ablation response of surfaces[J]. Experimental Heat Transfer, 1997, 10(1): 51-65. doi: 10.1080/08916159708946534
    [18] Latkowski A K B J F, Peterson P F, Scott J M, et al. Development of the NIF target chamber first wall and beam dumps[J]. Inertial Confinement, 1999.
    [19] 韩丰明, 徐世珍, 宋文亮, 等. 纳秒激光对铝合金和不锈钢的烧蚀特性研究[J]. 中国激光, 2016, 43:0203005 doi: 10.3788/CJL201643.0203005

    Han Fengming, Xu Shizhen, Song Wenliang, et al. Study of nanosecond laser ablation on aluminum and stainless steel targets[J]. Chinese Journal of Lasers, 2016, 43: 0203005 doi: 10.3788/CJL201643.0203005
    [20] Whitman P K, Burnham A K, Norton M A, et al. Management of unconverted light for the National Ignition Facility target chamber[C]//Proceedings of SPIE 3492, Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion. 1999: 718-729.
    [21] Latkowski J F. Neutron activation of the NIF final optics assemblies and their effect upon occupational doses[J]. Fusion Technology, 1998, 34(3P2): 767-771. doi: 10.13182/FST98-A11963706
    [22] Burnham A K, Gerassimenko M, Scott J M, et al. Constraints on target chamber first wall and target designs that will enable NIF debris shields to survive[C]//Proceedings of SPIE 3492. 1999: 730-739.
    [23] Cantwell B, Celeste J. National Ignition Facility pollution prevention and waste minimization plan[R]. Livermore: Lawrence Livermore National Laboratory, 1998.
    [24] Duchateau G. Simple models for laser-induced damage and conditioning of potassium dihydrogen phosphate crystals by nanosecond pulses[J]. Optics Express, 2009, 17(13): 10434-10456. doi: 10.1364/OE.17.010434
    [25] Guillet F, Bertussi B, Lamaignere L, et al. Preliminary results on mitigation of KDP surface damage using the ball dimpling method[C]//Proceedings of SPIE 6720, Laser-Induced Damage in Optical Materials: 2007. 2007: 89-97.
    [26] Zhang Wanli, Shi Feng, Song Ci, et al. Study on the absorption characteristics and laser damage properties of fused silica optics under flexible polishing and shallow DCE process[J]. Micromachines, 2021, 12: 1226. doi: 10.3390/mi12101226
    [27] Chen Mingjun, Ding Wenyu, Cheng Jian, et al. Recent advances in laser-induced surface damage of KH2PO4 crystal[J]. Applied Sciences, 2020, 10: 6642. doi: 10.3390/app10196642
    [28] Manenkov A A, Prokhorov A M. Laser-induced damage in solids[J]. Soviet Physics Uspekhi, 1986, 29(1): 104-122. doi: 10.1070/PU1986v029n01ABEH003117
    [29] Wood R M. Laser-induced damage of optical materials[M]. Boca Raton: CRC Press, 2003.
    [30] Koldunov M F, Manenkov A A, Pokotilo I L. Efficiency of various mechanisms of the laser damage in transparent solids[J]. Quantum Electronics, 2002, 32(7): 623-628. doi: 10.1070/QE2002v032n07ABEH002258
    [31] Demos S G, Staggs M, De Yoreo J J, et al. Imaging of laser-induced reactions of individual defect nanoclusters[J]. Optics Letters, 2001, 26(24): 1975-1977. doi: 10.1364/OL.26.001975
    [32] Demos S G, DeMange P, Negres R A, et al. Investigation of the electronic and physical properties of defect structures responsible for laser-induced damage in DKDP crystals[J]. Optics Express, 2010, 18(13): 13788-13804. doi: 10.1364/OE.18.013788
    [33] Yablonovitch E, Bloembergen N. Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media[J]. Physical Review Letters, 1972, 29(14): 907-910. doi: 10.1103/PhysRevLett.29.907
    [34] Sparks M S, Duthler C J. Theoretical studies of high-power ultraviolet and infrared materials[R]. Van Nuys: Xonics, Inc. , 1974.
    [35] Thornber K K. Applications of scaling to problems in high-field electronic transport[J]. Journal of Applied Physics, 1981, 52(1): 279-290. doi: 10.1063/1.328490
    [36] Koldunov M F, Manenkov A A, Pocotilo I L. Multishot laser damage in transparent solids: theory of accumulation effect[C]//Proceedings of SPIE 2428, Laser-Induced Damage in Optical Materials: 1994. 1995: 653-667.
    [37] Stuart B C, Feit M D, Herman S, et al. Optical ablation by high-power short-pulse lasers[J]. Journal of the Optical Society of America B, 1996, 13(2): 459-468. doi: 10.1364/JOSAB.13.000459
    [38] Stuart B C, Feit M D, Herman S, et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics[J]. Physical Review B, 1996, 53(4): 1749-1761. doi: 10.1103/PhysRevB.53.1749
    [39] Mevel E, Breger P, Trainham R, et al. Atoms in strong optical fields: evolution from multiphoton to tunnel ionization[J]. Physical Review Letters, 1993, 70(4): 406-409. doi: 10.1103/PhysRevLett.70.406
    [40] Rethfeld B. Free-electron generation in laser-irradiated dielectrics[J]. Contributions to Plasma Physics, 2007, 47(4/5): 360-367.
    [41] Keldysh L V. Ionization in the field of a strong electromagnetic wave[J]. Soviet Physics JETP, 1965, 20(5): 1307-1314.
    [42] Hopper R W, Uhlmann D R. Mechanism of inclusion damage in laser glass[J]. Journal of Applied Physics, 1970, 41(10): 4023-4037. doi: 10.1063/1.1658407
    [43] Manenkov A A. Fundamental mechanisms of laser-induced damage in optical materials: today’s state of understanding and problems[J]. Optical Engineering, 2014, 53: 010901. doi: 10.1117/1.OE.53.1.010901
    [44] Koldunov M, Manenkov A A. Theory of laser-induced inclusion-initiated damage in optical materials[J]. Optical Engineering, 2012, 51: 121811.
    [45] 陈明君, 庞启龙, 刘新艳. KDP晶体微纳加工表层杂质对其激光损伤阈值影响的有限元分析[J]. 强激光与粒子束, 2008, 20(7):1182-1186

    Chen Mingjun, Pang Qilong, Liu Xinyan. Finite element analysis on influence of micro-nano machined surface impurity on optical performance of crystal[J]. High Power Laser and Particle Beams, 2008, 20(7): 1182-1186
    [46] Barron E S G, Dickman S. Studies on the mechanism of action of ionizing radiations: II. Inhibition of sulfhydryl enzymes by alpha, beta, and gamma rays[J]. Journal of General Physiology, 1949, 32(5): 595-605. doi: 10.1085/jgp.32.5.595
    [47] Vladimirov P, Bouffard S. Displacement damage and transmutations in metals under neutron and proton irradiation[J]. Comptes Rendus Physique, 2008, 9(3/4): 303-322.
    [48] Lan Mu, Yang Zenghui, Wang Xiaofeng. Displacement damage in silicon studied by the electronic force field method in the keV regime[J]. Computational Materials Science, 2020, 179: 109697. doi: 10.1016/j.commatsci.2020.109697
    [49] Bravo D, Lagomacini J C, León M, et al. Comparison of neutron and gamma irradiation effects on KU1 fused silica monitored by electron paramagnetic resonance[J]. Fusion Engineering and Design, 2009, 84(2/6): 514-517.
    [50] Levchenko A N. Thermal annealing free radicals in γ-irradiated KDP and DKDP crystals[C]//Proceedings of the 8th International Conference on Advanced Optoelectronics and Lasers. 2019: 448-451.
    [51] León M, Martín P, Vila R, et al. Neutron irradiation effects on optical absorption of KU1 and KS-4V quartz glasses and Infrasil 301[J]. Fusion Engineering and Design, 2009, 84(7/11): 1174-1178.
    [52] Marshall C D, Speth J A, DeLoach L D, et al. Neutron- and gamma-irradiated optical property changes for the final optics of the National Ignition Facility[C]//Proceedings of SPIE 2633, Solid State Lasers for Application to Inertial Confinement Fusion (ICF). 1995: 535-540.
    [53] Ahlam M A, Ravishankar M N, Vijayan N, et al. The effect of Co-60 gamma irradiation on optical properties of some nonlinear optical (NLO) single crystals[J]. Journal of Optics, 2012, 41(3): 158-166. doi: 10.1007/s12596-012-0079-8
    [54] Sopapan P, Laopaiboon J, Jaiboon O, et al. Effect of zinc oxide on elastic and structural properties of recycled window glass: a comparative study between before and after gamma irradiation[J]. Journal of Physics: Conference Series, 2019, 1285: 012032. doi: 10.1088/1742-6596/1285/1/012032
    [55] Bass M, Barrett H H. Laser-induced damage probability at 1.06 μm and 0.69 μm[J]. Applied Optics, 1973, 12(4): 690-699. doi: 10.1364/AO.12.000690
    [56] Smith W L. KDP and ADP transmission in the vacuum ultraviolet[J]. Applied Optics, 1977, 16(7): 1798. doi: 10.1364/AO.16.001798
    [57] Eimerl D. Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs[J]. Ferroelectrics, 1987, 72(1): 95-139. doi: 10.1080/00150198708017942
    [58] Midwinter J E, Warner J. The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization[J]. British Journal of Applied Physics, 1965, 16(8): 1135-1142. doi: 10.1088/0508-3443/16/8/312
    [59] Levine B F, Bethea C G. Nonlinear susceptibility of GaP; Relative measurement and use of measured values to determine a better absolute value[J]. Applied Physics Letters, 1972, 20(8): 272-275. doi: 10.1063/1.1654145
    [60] Zaitseva N P, Rashkovich L N, Bogatyreva S V. Stability of KH2PO4 and K(H, D)2PO4 solutions at fast crystal growth rates[J]. Journal of Crystal Growth, 1995, 148(3): 276-282. doi: 10.1016/0022-0248(94)00606-7
    [61] Nakatsuka M, Fujioka K, Kanabe T, et al. Rapid growth over 50 mm/day of water-soluble KDP crystal[J]. Journal of Crystal Growth, 1997, 171(3/4): 531-537.
    [62] Chen Duanyang, Wang Bin, Wang Hu, et al. Rapid growth of a long-seed KDP crystal[J]. High Power Laser Science and Engineering, 2020, 8: e6. doi: 10.1017/hpl.2019.54
    [63] De Yoreo J J, Burnham A K, Whitman P K. Developing KH2PO4 and KD2PO4 crystals for the world’s most power laser[J]. International Materials Reviews, 2002, 47(3): 113-152. doi: 10.1179/095066001225001085
    [64] Ogorodnikov I N, Yakovlev V Y, Shul’gin B V, et al. Transient optical absorption of hole polarons in ADP (NH4H2PO4) and KDP (KH2PO4) crystals[J]. Physics of the Solid State, 2002, 44(5): 880-887. doi: 10.1134/1.1477487
    [65] Demos S G, Negres R A, Raman R N, et al. Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica[J]. Laser & Photonics Reviews, 2013, 7(3): 444-452.
    [66] Reyné S, Duchateau G, Hallo L, et al. Multi-wavelength study of nanosecond laser-induced bulk damage morphology in KDP crystals[J]. Applied Physics A, 2015, 119(4): 1317-1326. doi: 10.1007/s00339-015-9098-z
    [67] Huang Jin, Liu Hongjie, Wang Fengrui, et al. Influence of bulk defects on bulk damage performance of fused silica optics at 355 nm nanosecond pulse laser[J]. Optics Express, 2017, 25(26): 33416-33428. doi: 10.1364/OE.25.033416
    [68] Salo V I, Kolybayeva M I, Puzikov V M, et al. Effect of impurities on the value of the bulk laser damage threshold of KDP single crystals[C]//Proceedings of SPIE 3359, Optical Diagnostics of Materials and Devices for Opto-, Micro-, and Quantum Electronics 1997. 1998: 549-552.
    [69] Sui Tingting, Wan Chubin, Xu Mingxia, et al. Hybrid density functional theory for the stability and electronic properties of Fe-doped cluster defects in KDP crystal[J]. CrystEngComm, 2021, 23(44): 7839-7845. doi: 10.1039/D1CE01140E
    [70] Jiang Xuanyu, Li Yang, Wei Liening, et al. First-principles studies on optical absorption of [010] screw dislocation in KDP crystals[J]. CrystEngComm, 2021, 23(42): 7412-7417. doi: 10.1039/D1CE00987G
    [71] Jiang Xuanyu, Wei Liening, Li Yang, et al. Theoretical analysis of electronic structure and optical properties of potassium dihydrogen phosphate crystal affected by [011] screw dislocation[J]. Crystal Growth & Design, 2022, 22(3): 1764-1769.
    [72] Demos S G, Staggs M, Radousky H B. Bulk defect formations in KH2PO4 crystals investigated using fluorescence microscopy[J]. Physical Review B, 2003, 67: 224102. doi: 10.1103/PhysRevB.67.224102
    [73] Runkel M J, Woods B W, Yan Ming, et al. Analysis of high-resolution scatter images from laser damage experiments performed on KDP[C]//Proceedings of SPIE 2714, 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995. 1996: 185-195.
    [74] Chirila M M, Garces N Y, Halliburton L E, et al. Production and thermal decay of radiation-induced point defects in KD2PO4 crystals[J]. Journal of Applied Physics, 2003, 94(10): 6456-6462. doi: 10.1063/1.1620680
    [75] Stevens K T, Garces N Y, Halliburton L E, et al. Identification of the intrinsic self-trapped hole center in KD2PO4[J]. Applied Physics Letters, 1999, 75(11): 1503-1505. doi: 10.1063/1.124736
    [76] Tian Ye, Han Wei, Cao Huabao, et al. Characteristics of laser-induced surface damage on large-aperture KDP crystals at 351 nm[J]. Chinese Physics Letters, 2015, 32: 027801. doi: 10.1088/0256-307X/32/2/027801
    [77] Cheng Jian, Chen Mingjun, Liao Wei, et al. Influence of surface cracks on laser-induced damage resistance of brittle KH2PO4 crystal[J]. Optics Express, 2014, 22(23): 28740-28755. doi: 10.1364/OE.22.028740
    [78] Wang Shengfei, Wang Jian, Xu Qiao, et al. Influences of surface defects on the laser-induced damage performances of KDP crystal[J]. Applied Optics, 2018, 57(10): 2638-2646. doi: 10.1364/AO.57.002638
    [79] Miki H, Fukunaga R, Asakuma Y, et al. Distribution of dye into KDP crystals in a continuous MSMPR crystallizer[J]. Separation and Purification Technology, 2005, 43(1): 77-83. doi: 10.1016/j.seppur.2004.10.006
    [80] Carr C W, Radousky H B, Demos S G. Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms[J]. Physical Review Letters, 2003, 91: 127402. doi: 10.1103/PhysRevLett.91.127402
    [81] DeMange P, Carr C W, Negres R A, et al. Multiwavelength investigation of laser-damage performance in potassium dihydrogen phosphate after laser annealing[J]. Optics Letters, 2005, 30(3): 221-223. doi: 10.1364/OL.30.000221
    [82] Natoli J Y, Capoulade J, Piombini H, et al. Influence of laser beam size and wavelength in the determination of LIDT and associated laser damage precursor densities in KH2PO4[C]//Proceedings of SPIE 6720, Laser-Induced Damage in Optical Materials: 2007. 2007: 672016.
    [83] Runkel M J, Jennings R T, DeYoreo J J, et al. Overview of recent KDP damage experiments and implications for NIF tripler performance[C]//Proceedings of SPIE 3492, Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion. 1999: 374-385.
    [84] Fujioka K, Matsuo S, Kanabe T, et al. Optical properties of rapidly grown KDP crystal improved by thermal conditioning[J]. Journal of Crystal Growth, 1997, 181(3): 265-271. doi: 10.1016/S0022-0248(97)00164-4
    [85] Cai Dongting, Lian Yafei, Chai Xiangxu, et al. Effect of annealing on nonlinear optical properties of 70% deuterated DKDP crystals at 355 nm[J]. CrystEngComm, 2018, 20(45): 7357-7363. doi: 10.1039/C8CE01406J
    [86] Yokotani A, Sasaki T, Yoshida K, et al. Improvement of the bulk laser damage threshold of potassium dihydrogen phosphate crystals by ultraviolet irradiation[J]. Applied Physics Letters, 1986, 48(16): 1030-1032. doi: 10.1063/1.96638
    [87] Levchenko A N. Methods of optical absorption reduction in irradiated KDP single crystals containing arsenic ions[J]. Functional Materials, 2009, 16(2): 145-149.
    [88] Guo Decheng, Zu Xiaotao, Yang Guixia, et al. Gamma irradiation effect on optical and dielectric properties of potassium dihydrogen phosphate crystals[J]. Optical Materials, 2016, 54: 238-244. doi: 10.1016/j.optmat.2015.12.041
    [89] Moses E I. National ignition facility: 1.8-MJ 750-TW ultraviolet laser[C]//Proceedings of SPIE 5341, Optical Engineering at the Lawrence Livermore National Laboratory II: The National Ignition Facility. 2004: 13-24.
    [90] Moses E I, Campbell J H, Stolz C J, et al. The National Ignition Facility: the world’s largest optics and laser system[C]//Proceedings of SPIE 5001, Optical Engineering at the Lawrence Livermore National Laboratory. 2003: 1-15.
    [91] Peng Hansheng, Zhang Xiaomin, Wei X F, et al. Design of 60-kJ SG-III laser facility and related technology development[C]//Proceedings of SPIE 4424, ECLIM 2000: 26th European Conference on Laser Interaction with Matter. 2001: 98-103.
    [92] Zheng Wanguo, Wei Xiaofeng, Zhu Qihua, et al. Laser performance of the SG-III laser facility[J]. High Power Laser Science and Engineering, 2016, 4: e21. doi: 10.1017/hpl.2016.20
    [93] Andre M L. Status of the LMJ project[C]//Proceedings of SPIE 3047, Solid State Lasers for Application to Inertial Confinement Fusion: Second Annual International Conference. 1997: 38-42.
    [94] Dunne M. A high-power laser fusion facility for Europe[J]. Nature Physics, 2006, 2(1): 2-5. doi: 10.1038/nphys208
    [95] Chambonneau M, Lamaignère L. Multi-wavelength growth of nanosecond laser-induced surface damage on fused silica gratings[J]. Scientific Reports, 2018, 8: 891. doi: 10.1038/s41598-017-18957-9
    [96] Gao Xun, Li Qi, Chi Haijun, et al. 355nm and 1064nm laser damage of quartz glass[C]//Proceedings of SPIE 9543, Third International Symposium on Laser Interaction with Matter. 2015: 95430K.
    [97] 刘红婕, 周信达, 黄进, 等. 355 nm纳秒紫外激光辐照下熔石英前后表面损伤的对比研究[J]. 物理学报, 2011, 60:065202 doi: 10.7498/aps.60.065202

    Liu Hongjie, Zhou Xinda, Huang Jin, et al. Comparison of damage between front and rear surfaces under nanosecond 355nm laser irradiation on fused silica[J]. Acta Physica Sinica, 2011, 60: 065202 doi: 10.7498/aps.60.065202
    [98] Spaeth M L, Wegner P J, Suratwala T I, et al. Optics recycle loop strategy for NIF Operations above UV laser-induced damage threshold[J]. Fusion Science and Technology, 2016, 69(1): 265-294. doi: 10.13182/FST15-119
    [99] Li Yaguo, Yuan Zhigang, Wang Jian, et al. Laser-induced damage characteristics in fused silica surface due to mechanical and chemical defects during manufacturing processes[J]. Optics & Laser Technology, 2017, 91: 149-158.
    [100] Miller P E, Bude J D, Suratwala T I, et al. Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces[J]. Optics Letters, 2010, 35(16): 2702-2704. doi: 10.1364/OL.35.002702
    [101] Liao Defeng, Chen Xianhua, Tang Caixue, et al. Characteristics of hydrolyzed layer and contamination on fused silica induced during polishing[J]. Ceramics International, 2014, 40(3): 4479-4483. doi: 10.1016/j.ceramint.2013.08.121
    [102] Liu Hongjie, Huang Jin, Wang Fengrui, et al. Subsurface defects of fused silica optics and laser induced damage at 351 nm[J]. Optics Express, 2013, 21(10): 12204-12217. doi: 10.1364/OE.21.012204
    [103] Laurence T A, Bude J D, Ly S, et al. Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2)[J]. Optics Express, 2012, 20(10): 11561-11573. doi: 10.1364/OE.20.011561
    [104] Pfiffer M, Longuet J L, Labrugère C, et al. Characterization of the polishing-induced contamination of fused silica optics[J]. Journal of the American Ceramic Society, 2017, 100(1): 96-107. doi: 10.1111/jace.14448
    [105] Liu Hongjie, Wang Fengrui, Huang Jin, et al. Experimental study of 355 nm laser damage ignited by Fe and Ce impurities on fused silica surface[J]. Optical Materials, 2019, 95: 109231. doi: 10.1016/j.optmat.2019.109231
    [106] Shu Yong, Jiao Changjun, Duan Weiran. The impurity study of MRF processed fused silica surface[J]. Optik, 2020, 216: 164962. doi: 10.1016/j.ijleo.2020.164962
    [107] Kozlowski M R, Carr J, Hutcheon I D, et al. Depth profiling of polishing-induced contamination on fused silica surfaces[C]//Proceedings of SPIE 3244, Laser-Induced Damage in Optical Materials: 1997. 1998: 365-375.
    [108] Tian Ye, Han Wei, Yuan Xiaodong, et al. Structure and vibrations of cerium in silica glass from molecular dynamics simulations[J]. Journal of the American Ceramic Society, 2021, 104(1): 208-217. doi: 10.1111/jace.17453
    [109] Neauport J, Lamaignere L, Bercegol H, et al. Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm[J]. Optics Express, 2005, 13(25): 10163-10171. doi: 10.1364/OPEX.13.010163
    [110] Neauport J, Cormont P, Lamaignère L, et al. Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm[J]. Optics Communications, 2008, 281(14): 3802-3805. doi: 10.1016/j.optcom.2008.03.031
    [111] Camp D W, Kozlowski M R, Sheehan L M, et al. Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces[C]//Proceedings of SPIE 3244, Laser-Induced Damage in Optical Materials: 1997. 1998: 356-364.
    [112] Feit M D, Rubenchik A M. Influence of subsurface cracks on laser-induced surface damage[C]//Proceedings of SPIE 5273, Laser-Induced Damage in Optical Materials: 2003. 2004: 264-272.
    [113] Carr C W, Bude J D, Demange P. Laser-supported solid-state absorption fronts in silica[J]. Physical Review B, 2010, 82: 184304. doi: 10.1103/PhysRevB.82.184304
    [114] Neauport J, Cormont P, Legros P, et al. Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy[J]. Optics Express, 2009, 17(5): 3543-3554. doi: 10.1364/OE.17.003543
    [115] Bloembergen N. Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics[J]. Applied Optics, 1973, 12(4): 661-664. doi: 10.1364/AO.12.000661
    [116] Feit M D, Rubenchik A M, Faux D R, et al. Modeling of laser damage initiated by surface contamination[C]//Proceedings of SPIE 2966, Laser-Induced Damage in Optical Materials: 1996. 1997: 417-424.
    [117] Bude J, Miller P E, Shen Nan, et al. Silica laser damage mechanisms, precursors and their mitigation[C]//Proceedings of SPIE 9237, Laser-Induced Damage in Optical Materials: 2014. 2014: 92370S.
    [118] Suratwala T I, Miller P E, Bude J D, et al. HF-based etching processes for improving laser damage resistance of fused silica optical surfaces[J]. Journal of the American Ceramic Society, 2011, 94(2): 416-428. doi: 10.1111/j.1551-2916.2010.04112.x
    [119] Ye Xin, Huang Jin, Liu Hongjie, et al. Advanced mitigation process (AMP) for improving laser damage threshold of fused silica optics[J]. Scientific Reports, 2016, 6: 31111. doi: 10.1038/srep31111
    [120] Sun Laixi, Liu Hongjie, Huang Jin, et al. Reaction ion etching process for improving laser damage resistance of fused silica optical surface[J]. Optics Express, 2016, 24(1): 199-211. doi: 10.1364/OE.24.000199
    [121] Liu Hongjie, Ye Xin, Zhou Xinda, et al. Subsurface defects characterization and laser damage performance of fused silica optics during HF-etched process[J]. Optical Materials, 2014, 36(5): 855-860. doi: 10.1016/j.optmat.2013.11.022
    [122] Zhong Yaoyu, Dai Yifan, Tian Ye, et al. Effect on nanoscale damage precursors of fused silica with wet etching in KOH solutions[J]. Optical Materials Express, 2021, 11(3): 884-894. doi: 10.1364/OME.419610
    [123] Pfiffer M, Cormont P, Fargin E, et al. Effects of deep wet etching in HF/HNO3 and KOH solutions on the laser damage resistance and surface quality of fused silica optics at 351 nm[J]. Optics Express, 2017, 25(5): 4607-4620. doi: 10.1364/OE.25.004607
    [124] Li Bo, Xiang Xia, Liao Wei, et al. Improved laser induced damage thresholds of Ar ion implanted fused silica at different ion fluences[J]. Applied Surface Science, 2019, 471: 786-794. doi: 10.1016/j.apsusc.2018.11.210
    [125] Shi Feng, Shu Yong, Dai Yifan, et al. Magnetorheological elastic super-smooth finishing for high-efficiency manufacturing of ultraviolet laser resistant optics[J]. Optical Engineering, 2013, 52: 075104. doi: 10.1117/1.OE.52.7.075104
    [126] Demos S G, Carr C W, Cross D A. Mechanisms of surface contamination in fused silica by means of laser-induced electrostatic effects[J]. Optics Letters, 2017, 42(13): 2643-2646. doi: 10.1364/OL.42.002643
    [127] Huang Jin, Wang Fengrui, Liu Hongjie, et al. Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics[J]. Scientific Reports, 2017, 7: 16239. doi: 10.1038/s41598-017-16467-2
    [128] Tan Guolong, Lemon M F, Jones D J, et al. Optical properties and London dispersion interaction of amorphous and crystalline SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry[J]. Physical Review B, 2005, 72: 205117. doi: 10.1103/PhysRevB.72.205117
    [129] Hosono H, Ikuta Y, Kinoshita T, et al. Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2[J]. Physical Review Letters, 2001, 87: 175501. doi: 10.1103/PhysRevLett.87.175501
    [130] Tsai T E, Griscom D L. Experimental evidence for excitonic mechanism of defect generation in high-purity silica[J]. Physical Review Letters, 1991, 67(18): 2517-2520. doi: 10.1103/PhysRevLett.67.2517
    [131] Skuja L. Section 1. Defect studies in vitreous silica and related materials: optically active oxygen-deficiency-related centers in amorphous silicon dioxide[J]. Journal of Non-Crystalline Solids, 1998, 239(1/3): 16-48.
    [132] Li Yuan, Yan Hongwei, Yang Ke, et al. Surface molecular structure defects and laser-induced damage threshold of fused silica during a manufacturing process[J]. Scientific Reports, 2017, 7: 17870. doi: 10.1038/s41598-017-18249-2
    [133] Zhou Xiaoyan, Zhou Xinda, Huang Jin, et al. Effect of pulse energy and numbers on fused silica surface by ultraviolet laser pulses at 355nm in vacuum[C]//Proceedings of SPIE 8786, Pacific Rim Laser Damage 2013: Optical Materials for High Power Lasers. 2013: 87860O.
    [134] Stapelbroek M, Griscom D L, Friebele E J, et al. Oxygen-associated trapped-hole centers in high-purity fused silicas[J]. Journal of Non-Crystalline Solids, 1979, 32(1/3): 313-326.
    [135] Hosono H, Kawazoe H, Matsunami N. Experimental evidence for frenkel defect formation in amorphous SiO2 by electronic excitation[J]. Physical Review Letters, 1998, 80(2): 317-320. doi: 10.1103/PhysRevLett.80.317
    [136] Skuja L, Kajihara K, Hirano M, et al. Visible to vacuum-UV range optical absorption of oxygen dangling bonds in amorphous SiO2[J]. Physical Review B, 2011, 84: 205206. doi: 10.1103/PhysRevB.84.205206
    [137] Friebele E J, Griscom D L, Stapelbroek M, et al. Fundamental defect centers in glass: the peroxy radical in irradiated, high-purity, fused silica[J]. Physical Review Letters, 1979, 42(20): 1346-1349. doi: 10.1103/PhysRevLett.42.1346
    [138] 苏锐, 张红, 姜胜利, 等. 熔石英中过氧缺陷及中性氧空位缺陷的几何结构、电子结构和吸收光谱的准粒子计算[J]. 物理学报, 2016, 65:027801 doi: 10.7498/aps.65.027801

    Su Rui, Zhang Hong, Jiang Sengli, et al. Quasi-particle calculations on electronic and optical properties of the peroxy linkage and neutral oxygen vacancy defects in amorphous silica[J]. Acta Physica Sinica, 2016, 65: 027801 doi: 10.7498/aps.65.027801
    [139] Jia Baonan, Guan Zixuan, Quhe Ruge, et al. Adsorption characteristics of F and Cl atoms on fused silica surface defects[J]. Journal of Non-Crystalline Solids, 2018, 497: 7-11. doi: 10.1016/j.jnoncrysol.2018.05.030
    [140] Tamura T, Lu Guanghong, Yamamoto R, et al. First-principles study of neutral oxygen vacancies in amorphous silica and germania[J]. Physical Review B, 2004, 69: 195204. doi: 10.1103/PhysRevB.69.195204
    [141] Jia Baonan, Guan Zixuan, Peng Zhixing, et al. Structural disorder in fused silica with ODC(I) defect[J]. Applied Physics A, 2018, 124: 696. doi: 10.1007/s00339-018-2017-3
    [142] Richard N, Martin-Samos L, Girard S, et al. Oxygen deficient centers in silica: optical properties within many-body perturbation theory[J]. Journal of Physics: Condensed Matter, 2013, 25: 335502. doi: 10.1088/0953-8984/25/33/335502
    [143] Donadio D, Bernasconi M, Boero M. Ab initio simulations of photoinduced interconversions of oxygen deficient centers in amorphous silica[J]. Physical Review Letters, 2001, 87: 195504. doi: 10.1103/PhysRevLett.87.195504
    [144] Lu Pengfei, Wu Liyuan, Yang Yang, et al. Stable structure and optical properties of fused silica with NBOHC-E′ defect[J]. Chinese Physics B, 2016, 25: 086801. doi: 10.1088/1674-1056/25/8/086801
    [145] Wang Weizheng, Lu Pengfei, Han Lihong, et al. Structural and electronic properties of peroxy linkage defect and its interconversion in fused silica[J]. Journal of Non-Crystalline Solids, 2016, 434: 96-101. doi: 10.1016/j.jnoncrysol.2015.12.018
    [146] Cheng Yang, Ren Dahua, Zhang Hong, et al. First-principle study of the structural, electronic and optical properties of defected amorphous silica[J]. Journal of Non-Crystalline Solids, 2015, 416: 36-43. doi: 10.1016/j.jnoncrysol.2015.02.006
    [147] Wang Jun, Rajendran A M, Dongare A M. Atomic scale modeling of shock response of fused silica and α-quartz[J]. Journal of Materials Science, 2015, 50(24): 8128-8141. doi: 10.1007/s10853-015-9386-1
    [148] Su Rui, Xiang Meizhen, Chen Jun, et al. Molecular dynamics simulation of shock induced ejection on fused silica surface[J]. Journal of Applied Physics, 2014, 115: 193508. doi: 10.1063/1.4876742
    [149] Tian Ye, Du Jincheng, Zu Xiaotao, et al. UV-induced modification of fused silica: insights from ReaxFF-based molecular dynamics simulations[J]. AIP Advances, 2016, 6: 095312. doi: 10.1063/1.4963204
    [150] Massobrio C, Du Jincheng, Bernasconi M, et al. Molecular dynamics simulations of disordered materials: from network glasses to phase-change memory alloys[M]. Cham: Springer, 2015.
    [151] Van Hoang V. Molecular dynamics simulation of amorphous SiO2 nanoparticles[J]. The Journal of Physical Chemistry B, 2007, 111(44): 12649-12656. doi: 10.1021/jp074237u
    [152] Wootton A, Thomas B, Harrowell P. Radiation-induced densification in amorphous silica: a computer simulation study[J]. The Journal of Chemical Physics, 2001, 115(7): 3336-3341. doi: 10.1063/1.1387039
    [153] Lü Haibing, Xu Shizhen, Wang Haijun, et al. Evolution of oxygen deficiency center on fused silica surface irradiated by ultraviolet laser and posttreatment[J]. Advances in Condensed Matter Physics, 2014, 2014: 769059.
    [154] Xu Shizhen, Zu Xiaotao, Jiang Xiaodong, et al. The damage mechanisms of fused silica irradiated by 355 nm laser in vacuum[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2008, 266(12/13): 2936-2940.
    [155] Feng Qingyi, Deng Hongxiang, Huang Sizhao, et al. Strong UV laser absorption source near 355 nm in fused silica and its origination[J]. Optics Express, 2021, 29(20): 31849-31858. doi: 10.1364/OE.438128
    [156] Marshall C D, Speth J A, Payne S A. Induced optical absorption in gamma, neutron and ultraviolet irradiated fused quartz and silica[J]. Journal of Non-Crystalline Solids, 1997, 212(1): 59-73. doi: 10.1016/S0022-3093(96)00606-0
    [157] Pu Yunti, Ma Ping, Chen Songlin, et al. Mechanism for atmosphere dependence of laser damage morphology in HfO2/SiO2 high reflective films[J]. Journal of Applied Physics, 2012, 112: 023111. doi: 10.1063/1.4737405
    [158] Harthcock C, Qiu S R, Mirkarimi P B, et al. Origin and effect of film sub-stoichiometry on ultraviolet, ns-laser damage resistance of hafnia single layers[J]. Optical Materials Express, 2020, 10(4): 937-951. doi: 10.1364/OME.389416
    [159] Abromavičius G, Kičas S, Buzelis R. High temperature annealing effects on spectral, microstructural and laser damage resistance properties of sputtered HfO2 and HfO2-SiO2 mixture-based UV mirrors[J]. Optical Materials, 2019, 95: 109245. doi: 10.1016/j.optmat.2019.109245
    [160] Zhao Zecheng, Sun Jian, Zhu Meiping, et al. Research to improve the optical performance and laser-induced damage threshold of hafnium oxide/silica dichroic coatings[J]. Optical Materials, 2021, 113: 110890. doi: 10.1016/j.optmat.2021.110890
    [161] 杨帆, 沈军, 吴广明, 等. 溶胶-凝胶光学薄膜的激光损伤研究[J]. 强激光与粒子束, 2003, 15(5):439-443

    Yang Fan, Shen Jun, Wu Guangming, et al. Laser damage of Sol-Gel thin film[J]. High Power Laser and Particle Beams, 2003, 15(5): 439-443
    [162] 陈习权, 祖小涛, 郑万国, 等. 单层SiO2物理膜与化学膜激光损伤机理的对比研究[J]. 物理学报, 2006, 55(3):1201-1206 doi: 10.7498/aps.55.1201

    Chen Xiquan, Zu Xiaotao, Zheng Wanguo, et al. Experimental research of laser-induced damage mechanism of the sol-gel SiO2 and IBSD SiO2 thin films[J]. Acta Physica Sinica, 2006, 55(3): 1201-1206 doi: 10.7498/aps.55.1201
    [163] Zhao Yuanan, Gao Weidong, Shao Jianda, et al. Roles of absorbing defects and structural defects in multilayer under single-shot and multi-shot laser radiation[J]. Applied Surface Science, 2004, 227(1/4): 275-281.
    [164] 孙承纬. 激光辐照效应[M]. 北京: 国防工业出版社, 2002

    Sun Chengwei. Laser irradiation effect[M]. Beijing: National Defense Industry Press, 2002
    [165] 蒋晓东, 黄祖鑫, 任寰, 等. 光学膜层激光预处理过程研究[J]. 强激光与粒子束, 2002, 14(3):321-324

    Jiang Xiaodong, Huang Zuxin, Ren Huan, et al. Study of laser conditioning process for optical films[J]. High Power Laser and Particle Beams, 2002, 14(3): 321-324
    [166] Guo Yuanjun, Zu Xiaotao, Jiang Xiaodong, et al. Laser-induced damage mechanism of the sol-gel single-layer SiO2 acid and base thin films[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2008, 266(12/13): 3190-3194.
    [167] Yoshida K, Yabe T, Yoshida H, et al. Mechanism of damage formation in antireflection coatings[J]. Journal of Applied Physics, 1986, 60(4): 1545-1546. doi: 10.1063/1.337290
    [168] Rivera A, Garoz D, Juarez R, et al. Lifetime of silica final lenses subject to HiPER irradiation conditions[C]//Proceedings of SPIE 7916, High Power Lasers for Fusion Research. 2011: 79160S.
    [169] Guo Decheng, Jiang Xiaodong, Huang Jun, et al. Effects of γ-ray irradiation on optical absorption and laser damage performance of KDP crystals containing arsenic impurities[J]. Optics Express, 2014, 22(23): 29020-29030. doi: 10.1364/OE.22.029020
    [170] Arshak K, Korostynska O, Harris J, et al. Properties of BGO thin films under the influence of gamma radiation[J]. Thin Solid Films, 2008, 516(7): 1493-1498. doi: 10.1016/j.tsf.2007.03.090
    [171] Izerrouken M, Kermadi S, Souami N, et al. Influence of reactor neutrons irradiation on electrical, optical and structural properties of SnO2 film prepared by sol-gel method[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 611(1): 14-17.
    [172] Innocenzi P, Malfatti L, Kidchob T, et al. Densification of sol-gel silica thin films induced by hard X-rays generated by synchrotron radiation[J]. Journal of Synchrotron Radiation, 2011, 18(2): 280-286. doi: 10.1107/S0909049510051666
    [173] Alyamani A, Mustapha N. Effects of high dose gamma irradiation on ITO thin film properties[J]. Thin Solid Films, 2016, 611: 27-32. doi: 10.1016/j.tsf.2016.05.022
    [174] Olarinoye I O, Ogundare F O. Optical and microstructural properties of neutron irradiated RF- sputtered amorphous alumina thin films[J]. Optik, 2017, 134: 66-77. doi: 10.1016/j.ijleo.2017.01.032
    [175] Ali S M, Garawi M S A, Al-Ghamdi S S, et al. Gamma induced structural and optical changes of TiO2 thin film deposited by atomic layer deposition[J]. Journal of Nanoelectronics and Optoelectronics, 2018, 13(11): 1701-1704. doi: 10.1166/jno.2018.2422
    [176] Snoeks E, Polman A, Volkert C A. Densification, anisotropic deformation, and plastic flow of SiO2 during MeV heavy ion irradiation[J]. Applied Physics Letters, 1994, 65(19): 2487-2489. doi: 10.1063/1.112646
    [177] van Dillen T, Brongersma M L, Snoeks E, et al. Activation energy spectra for annealing of ion irradiation induced defects in silica glasses[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1999, 148(1/4): 221-226.
    [178] Shojaee S A, Qi Yongli, Wang Yongqiang, et al. Ion irradiation induced structural modifications and increase in elastic modulus of silica based thin films[J]. Scientific Reports, 2017, 7: 40100. doi: 10.1038/srep40100
    [179] Rehman S, Singh R G, Pivin J C, et al. Structural and spectroscopic modifications of nanocrystalline zinc oxide films induced by swift heavy ions[J]. Vacuum, 2011, 86(1): 87-90. doi: 10.1016/j.vacuum.2011.04.019
    [180] Malo M, Soto C, García-Rosales C, et al. On the electrical properties under irradiation of porous SiC prepared by sacrificial template technique[J]. Fusion Engineering and Design, 2020, 152: 111428. doi: 10.1016/j.fusengdes.2019.111428
    [181] Feng Qingyi, Deng Hongxiang, Wang Biyi, et al. Neutron irradiation effect on amorphous porous silica[J]. Journal of the American Ceramic Society, 2022, 105(12): 7334-7343. doi: 10.1111/jace.18718
  • 加载中
图(32) / 表(1)
计量
  • 文章访问数:  557
  • HTML全文浏览量:  190
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-11
  • 修回日期:  2023-05-18
  • 录用日期:  2023-05-27
  • 网络出版日期:  2023-06-20
  • 刊出日期:  2023-09-01

目录

    /

    返回文章
    返回