留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同燃耗计算模型对商用压水堆乏燃料组件核素成分的影响分析

陈熙荣 谢金森 于涛 倪梓宁 邓年彪 邵增 谢浩然

陈熙荣, 谢金森, 于涛, 等. 不同燃耗计算模型对商用压水堆乏燃料组件核素成分的影响分析[J]. 强激光与粒子束, 2023, 35: 056002. doi: 10.11884/HPLPB202335.230010
引用本文: 陈熙荣, 谢金森, 于涛, 等. 不同燃耗计算模型对商用压水堆乏燃料组件核素成分的影响分析[J]. 强激光与粒子束, 2023, 35: 056002. doi: 10.11884/HPLPB202335.230010
Chen Xirong, Xie Jinsen, Yu Tao, et al. Analysis of different burnup calculation models on nuclide components of spent fuel assembly in commercial pressurized water reactor[J]. High Power Laser and Particle Beams, 2023, 35: 056002. doi: 10.11884/HPLPB202335.230010
Citation: Chen Xirong, Xie Jinsen, Yu Tao, et al. Analysis of different burnup calculation models on nuclide components of spent fuel assembly in commercial pressurized water reactor[J]. High Power Laser and Particle Beams, 2023, 35: 056002. doi: 10.11884/HPLPB202335.230010

不同燃耗计算模型对商用压水堆乏燃料组件核素成分的影响分析

doi: 10.11884/HPLPB202335.230010
详细信息
    作者简介:

    陈熙荣,1169189719@qq.com

    通讯作者:

    于 涛, yutao29@sina.com

  • 中图分类号: TL32;TL329

Analysis of different burnup calculation models on nuclide components of spent fuel assembly in commercial pressurized water reactor

  • 摘要: 燃耗计算精度对提高乏燃料贮存效率有着重要影响,在应用燃耗信用制时,燃耗计算得到的核素成分偏差决定了乏燃料贮存的临界安全裕量。不同燃耗计算模型所得到的核素成分偏差各不相同,为提高燃耗计算精度,提出了一种装载不同燃料富集度的多组件燃耗计算模型,并使用不同燃耗计算模型分别对TMI-1反应堆NJ07OG组件中的6个样本进行了计算、对比和分析。结果表明,相比其他模型,考虑不同燃料富集度的多组件模型得到的235U、238U和239Pu等核素平均相对偏差更接近于零且6个样本的相对偏差分布更为平均。
  • 图  1  TMI-1压水堆NJ07OG组件布置图

    Figure  1.  Assembly NJ07OG layout of PWR TMI-1

    图  2  样本轴向位置

    Figure  2.  Axial position of the sample

    图  3  样本辐照历史图

    Figure  3.  Irradiation history of samples

    图  4  TMI-1压水堆NJ07OG组件周围燃料布置图

    Figure  4.  Layout of other assemblies around the TMI-1 pressurized water reactor NJ07OG assembly

    图  5  四种不同的燃耗计算模型图

    Figure  5.  Four different burnup calculation models

    图  6  主要核素的不同模型计算值相对偏差对比图

    Figure  6.  Comparison of relative deviations of calculated values for major nuclides

    图  7  不同模型的平均相对偏差图

    Figure  7.  Comparison of the average relative deviations

    表  1  燃料组件几何参数表

    Table  1.   Fuel assembly geometric parameters (mm)

    fuel pellet inner
    diameter
    clad inner
    diameter
    clad outer
    diameter
    cell pitch absorber rod
    pellet diameter
    absorber rod cladding
    inner diameter
    9.40 9.58 10.92 14.43 8.64 9.14
    absorber rod cladding
    outer diameter
    guide tube
    inner diameter
    guide tube
    outer diameter
    instrument tube
    inner diameter
    instrument tube
    outer diameter
    assembly
    pitch
    10.92 12.65 13.46 11.2 12.52 218.11
    下载: 导出CSV

    表  2  选取的核素列表

    Table  2.   Nuclides chosen

    actinide nuclides fission products
    234U, 235U, 236U, 238U 151Eu, 153Eu, 143Nd, 145Nd, 148Nd
    238Pu, 239Pu, 240Pu, 241Pu, 242Pu 147Sm, 149Sm, 150Sm, 151Sm, 152Sm
    237Np, 241Am, 243Am, 244Cm 155Gd
    下载: 导出CSV
  • [1] 肖雨生. 中国核电发展与乏燃料贮存及后处理的关系[J]. 电工技术, 2020(18):24-25,57 doi: 10.19768/j.cnki.dgjs.2020.18.010

    Xiao Yusheng. Relationship between China’s nuclear power development and spent fuel storage and reprocessing[J]. Electric Engineering, 2020(18): 24-25,57 doi: 10.19768/j.cnki.dgjs.2020.18.010
    [2] 徐健, 王伟, 黄庆勇, 等. 国外核电厂乏燃料贮存方式对比研究[J]. 中国核电, 2021, 14(6):901-909

    Xu Jian, Wang Wei, Huang Qingyong, et al. Comparison study on spent fuel storage of nuclear power plant[J]. China Nuclear Power, 2021, 14(6): 901-909
    [3] 杨海峰, 霍小东, 易璇, 等. 高密度乏燃料贮存格架临界安全设计[J]. 核动力工程, 2014, 35(s2):167-169 doi: 10.13832/j.jnpe.2014.S2.0167

    Yang Haifeng, Huo Xiaodong, Yi Xuan, et al. Criticality safety design for high density spent fuel storage rack[J]. Nuclear Power Engineering, 2014, 35(s2): 167-169 doi: 10.13832/j.jnpe.2014.S2.0167
    [4] 倪梓宁, 于涛, 谢金森, 等. 燃耗信任制下燃耗计算对临界计算的偏差及不确定度的研究[J]. 原子能科学技术, 2022, 56(9):1915-1923

    Ni Zining, Yu Tao, Xie Jinsen, et al. Research on critical calculation bias and uncertainty from burnup calculation based on burnup credit[J]. Atomic Energy Science and Technology, 2022, 56(9): 1915-1923
    [5] Radulescu G, Gauld I C, Ilas G, et al. Approach for validating actinide and fission product compositions for burnup credit criticality safety analyses[J]. Nuclear Technology, 2014, 188(2): 154-171. doi: 10.13182/NT13-154
    [6] Michel-Sendis F, Gauld I C, Martinez J S, et al. SFCOMPO-2.0: an OECD NEA database of spent nuclear fuel isotopic assays, reactor design specifications, and operating data[J]. Annals of Nuclear Energy, 2017, 110: 779-788. doi: 10.1016/j.anucene.2017.07.022
    [7] Gauld I C, Giaquinto J M, Delashmitt J S, et al. Re-evaluation of spent nuclear fuel assay data for the Three Mile Island unit 1 reactor and application to code validation[J]. Annals of Nuclear Energy, 2016, 87: 267-281. doi: 10.1016/j.anucene.2015.08.026
    [8] Hermann O W, Bowman S M, Parks C V, et al. Validation of the SCALE system for PWR spent fuel isotopic composition analyses[R]. ORNL/TM-12667, 1995.
    [9] 汪天雄, 张滕飞, 吴海成, 等. 基于组件计算的燃耗实验基准题建模分析[J]. 核技术, 2020, 43:060003 doi: 10.11889/j.0253-3219.2020.hjs.43.060003

    Wang Tianxiong, Zhang Tengfei, Wu Haicheng, et al. Modeling and analysis of depletion experiment benchmark based on assembly calculation[J]. Nuclear Techniques, 2020, 43: 060003 doi: 10.11889/j.0253-3219.2020.hjs.43.060003
    [10] 肖越, 吴海成, 吴小飞, 等. 燃耗数据库基准检验方法研究[J]. 原子能科学技术, 2022, 56(5):952-960

    Xiao Yue, Wu Haicheng, Wu Xiaofei, et al. Research on benchmarking method of burnup database[J]. Atomic Energy Science and Technology, 2022, 56(5): 952-960
    [11] 杨森涵, 李云召, 邵睿智, 等. 基于NECP-Bamboo程序的商用压水堆乏燃料组件核素成分分析[J/OL]. 原子能科学技术: 1-10[2023-01-12]. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=YZJS20221108000.

    Yang Senhan, Li Yunzhao, Shao Ruizhi, et al. Nuclide composition evaluation for commercial PWR nuclear spent fuel assembly based on NECP-Bamboo[J/OL]. Atomic Energy Science and Technology: 1-10[2023-01-12]. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=YZJS20221108000.
    [12] Ade B J. SCALE/TRITON Primer: a primer for light water reactor lattice physics calculations[R]. NUREG/CR-7041, ORNL/TM-2011/21, 2012.
    [13] Greene N M. BONAMI: resonance self-shielding by the Bondarenko method[R]. ORNL/TM-2005/39, 2011.
    [14] Westfall R M, Petrie L M, Greene N M, et al. NITAWL: SCALE system module for performing resonance shielding and working library production[R]. ORNL/TM-2005/39, 2011.
    [15] Scaglione J M. Three Mile Island unit 1 radiochemical assay comparisons to SAS2H calculations[R]. CAL-UDC-NU-000011, 2002.
    [16] Gauld I C. ORIGEN-S: depletion module to calculate neutron activation, actinide transmutation, fission product generation, and radiation source terms[R]. ORNL/TM-2005/39, 2011.
    [17] Wimmer L B. Summary report of commercial reactor criticality data for Three Mile Island unit 1[R]. TDR-UDC-NU-000004, 2001.
    [18] 夏兆东, 周小平, 李晓波, 等. 田湾核电站乏燃料水池采用燃耗信任制的计算研究[J]. 原子能科学技术, 2013, 47(11):2098-2102 doi: 10.7538/yzk.2013.47.11.2098

    Xia Zhaodong, Zhou Xiaoping, Li Xiaobo, et al. Calculation study of TNPS spent fuel pool using burnup credit[J]. Atomic Energy Science and Technology, 2013, 47(11): 2098-2102 doi: 10.7538/yzk.2013.47.11.2098
    [19] ASTM E321-2, Standard test method for atom percent fission in uranium and plutonium fuel (neodymium-148 method)[S].
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  590
  • HTML全文浏览量:  233
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-13
  • 修回日期:  2023-02-18
  • 网络出版日期:  2022-11-24
  • 刊出日期:  2023-04-07

目录

    /

    返回文章
    返回