留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

100 kHz高功率高光束质量纳秒激光振荡器

杨天利 杨晶 周王哲 李雪鹏 王小军 彭钦军

杨天利, 杨晶, 周王哲, 等. 100 kHz高功率高光束质量纳秒激光振荡器[J]. 强激光与粒子束, 2023, 35: 071006. doi: 10.11884/HPLPB202335.230023
引用本文: 杨天利, 杨晶, 周王哲, 等. 100 kHz高功率高光束质量纳秒激光振荡器[J]. 强激光与粒子束, 2023, 35: 071006. doi: 10.11884/HPLPB202335.230023
Yang Tianli, Yang Jing, Zhou Wangzhe, et al. 100 kHz high power high beam quality nanosecond laser oscillator[J]. High Power Laser and Particle Beams, 2023, 35: 071006. doi: 10.11884/HPLPB202335.230023
Citation: Yang Tianli, Yang Jing, Zhou Wangzhe, et al. 100 kHz high power high beam quality nanosecond laser oscillator[J]. High Power Laser and Particle Beams, 2023, 35: 071006. doi: 10.11884/HPLPB202335.230023

100 kHz高功率高光束质量纳秒激光振荡器

doi: 10.11884/HPLPB202335.230023
详细信息
    作者简介:

    杨天利,yangtianli18@mails.ucas.ac.cn

    通讯作者:

    杨 晶, yangjing@mail.ipc.ac.cn

    王小军, wangxj@mail.ipc.ac.cn

  • 中图分类号: TN248.1

100 kHz high power high beam quality nanosecond laser oscillator

  • 摘要: 高功率、高重复频率纳秒脉冲激光广泛应用于激光切割、激光焊接等领域。随着激光重复频率的提升,特别是高于50 kHz时,单个周期有限的时间内难以积累足够的上能级粒子,调Q脉冲的稳定性成为了激光器设计的难点。当前主要采用主振荡器的功率放大器(MOPA)方案,直接振荡获得兼具高功率、高重复频率及高光束质量的纳秒脉冲激光还比较困难。通过对激光动力学过程的仿真模拟,定量分析了高重复频率调Q过程中脉冲强度稳定性与泵浦速率的关系,并利用负透镜使振荡器工作在具有较大基模体积的热近非稳区,实现了Nd:YAG声光调Q激光振荡器在高重复频率、高功率、高光束质量三方面的均衡设计。首次利用侧泵模块实现了100 kHz高功率高光束质量纳秒脉冲激光的直接振荡产生,脉冲强度的离散系数仅为0.041,激光输出功率超过142 W,脉冲宽度为165 ns,光束质量因子M2为1.5。
  • 图  1  LD侧泵Nd:YAG模块横截面示意图

    Figure  1.  Cross section of LD side-pumped Nd:YAG module

    图  2  单个LD侧泵Nd:YAG模块的热透镜焦距与泵浦功率的关系

    Figure  2.  Thermal lens focal length versus the pump power for a single LD side-pumped Nd:YAG module

    图  3  LD侧泵Nd:YAG调Q激光振荡器示意图

    Figure  3.  Schematic of the Q-switched LD side-pumped Nd:YAG oscillator

    图  4  基模光斑直径与热焦距的关系

    Figure  4.  Diameter of the fundamental mode versus the thermal focal length

    图  5  泵浦速率与调Q脉冲强度的离散系数 $ V_{\rm{s}} $ 的关系的激光动力学仿真模拟结果

    Figure  5.  Laser dynamic simulation results of the discrete coefficient $ V_{\rm{s}} $ versus the pump rate

    图  6  优化后输出功率随泵浦功率变化曲线

    Figure  6.  Average output power versus pump power after optimization

    图  7  泵浦功率为669 W和629.5 W时脉冲序列的典型实验测量(蓝色)与数值计算(红色)结果

    Figure  7.  Typical experimental measurement (blue) and numerical calculation (red) results of pulse train at pump powers of 669 W and 629.5 W

    图  8  优化后的M2测量结果,插图为远场光斑

    Figure  8.  M2 measurement result after optimization. Inset is the beam far-filed intensity profile

  • [1] Koechner W. Solid-state laser engineering[M]. New York: Springer, 2006: 35-37, 54-61, 119-125, 188-190, 442-445, 488-493, 515-522.
    [2] 李雪鹏, 杨晶, 筵兴伟, 等. 百瓦级近衍射极限VCSEL泵浦激光器[J]. 强激光与粒子束, 2022, 34:081004 doi: 10.11884/HPLPB202234.220078

    Li Xuepeng, Yang Jing, Yan Xingwei, et al. Hundred-watt level VCSEL-pumped laser with near diffraction limit beam quality[J]. High Power Laser and Particle Beams, 2022, 34: 081004 doi: 10.11884/HPLPB202234.220078
    [3] Kalichevsky-Dong M T, Ge Wenping, Hawkins T W, et al. 4.8 mJ pulse energy directly from single-mode Q-switched ytterbium fiber lasers[J]. Optics Express, 2021, 29: 30384. doi: 10.1364/OE.438634
    [4] Zhang Shubao, Guo Lin, Li Menglong, et al. High-power near diffraction-limited 1064-nm Nd: YAG rod laser and second harmonic generation by intracavity-frequency-doubling[J]. Chinese Optics Letters, 2012, 10(7): 45-48.
    [5] Honea E C, Beach R J, Mitchell S C, et al. Dual-rod Yb: YAG laser for high-power and high-brightness applications[C]//Advanced Solid State Lasers 2000. Davos, Switzerland: Optica Publishing Group, 2000: MA6.
    [6] Stolzenburg C, Giesen A, Butze F, et al. Cavity-dumped intracavity-frequency-doubled Yb: YAG thin disk laser at 100 kHz repetition rate[C]//Advanced Solid-State Photonics 2007. Vancouver, Canada: Optica Publishing Group, 2007: TuC4.
    [7] Fu Xing, Liu Q, Yan Xianghe, et al. 120 W high repetition rate Nd: YVO4 MOPA laser with a Nd: YAG cavity-dumped seed laser[J]. Applied Physics B, 2009, 95(1): 63-67. doi: 10.1007/s00340-009-3387-1
    [8] 余锦, 张雪, 刘洋, 等. LD泵浦高功率高斜效率Nd: YVO4声光调Q激光器[J]. 强激光与粒子束, 2011, 23(2):285-289 doi: 10.3788/HPLPB20112302.0285

    Yu Jin, Zhang Xue, Liu Yang, et al. Laser diode end-pumped accousto-optical Q-switched Nd: YVO4 laser with high power and high slope efficiency[J]. High Power Laser and Particle Beams, 2011, 23(2): 285-289 doi: 10.3788/HPLPB20112302.0285
    [9] Wang Zijian, Jin Guangyong, Yu Yongji, et al. High repetition-rate and short pulse-width 1064nm laser in a composite crystal device[C]//Proceedings of SPIE 9295, International Symposium on Optoelectronic Technology and Application 2014: Laser Materials Processing and Micro/Nano Technologies. 2014: 92950L.
    [10] Zhang Wenqi, Shen Yijie, Meng Yuan, et al. Quasi-single-crystal-fiber acousto-optic Q-switched tandem dual Nd: YVO4 thin rods laser[J]. Applied Optics, 2017, 56(27): 7512-7517. doi: 10.1364/AO.56.007512
    [11] Li Xudong, Yu Xin, Chen Fei, et al. Power scaling of directly dual-end-pumped Nd: GdVO4 laser using grown-together composite crystal[J]. Optics Express, 2010, 18(7): 7407-7014. doi: 10.1364/OE.18.007407
    [12] Yu Xinghuo, Wang Cheng, Ma Yufei, et al. Performance improvement of high repetition rate electro-optical cavity-dumped Nd: GdVO4 laser[J]. Applied Physics B, 2012, 106(2): 309-313. doi: 10.1007/s00340-011-4786-7
    [13] 石朝辉, 张晶, 牛岗, 等. 高重频双端泵浦全固态Nd: YVO4声光调Q激光器[J]. 激光与红外, 2006, 36(8):635-638 doi: 10.3969/j.issn.1001-5078.2006.08.005

    Shi Zhaohui, Zhang Jing, Niu Gang, et al. High repetition rate AO Q-switching of double end pumped Nd: YVO4 all-solid-state laser[J]. Laser & Infrared, 2006, 36(8): 635-638 doi: 10.3969/j.issn.1001-5078.2006.08.005
    [14] Omatsu T, Isogami T, Minassian A, et al. >100kHz Q-switched operation in transversely diode-pumped ceramic Nd 3+: YAG laser in bounce geometry[J]. Optics Communications, 2005, 249(4/6): 531-537.
    [15] Liu Ke, Li Fangqin, Xu H Y, et al. High-power high-efficiency acousto-optically Q-switched rod Nd: YAG laser with 885nm diode laser pumping[J]. Optics Communications, 2013, 286: 291-294. doi: 10.1016/j.optcom.2012.09.008
    [16] 耿爱丛, 赵慈, 薄勇, 等. 一种测量二极管侧面抽运固体激光器热焦距的方法[J]. 物理学报, 2008, 57(11):6987-6991 doi: 10.3321/j.issn:1000-3290.2008.11.045

    Geng Aicong, Zhao Ci, Bo Yong, et al. A method for measuring thermal focal length of LD-side-pumped laser crystal[J]. Acta Physica Sinica, 2008, 57(11): 6987-6991 doi: 10.3321/j.issn:1000-3290.2008.11.045
    [17] 郭亚丁. 高功率全固态激光器技术研究[D]. 北京: 中国科学院大学, 2020: 44-48

    Guo Yading. Research on high-power solid state laser[D]. Beijing: University of Chinese Academy of Sciences, 2020: 44-48
    [18] Feng Yan, Bi Yong, Xu Zuyan, et al. Thermally near-unstable cavity design for solid state lasers[C]//Proceedings of SPIE 4969, Laser Resonators and Beam Control VI. 2003: 227-232.
    [19] 吕百达. 激光光学: 光束描述、传输变换与光腔技术物理[M]. 3版. 北京: 高等教育出版社, 2003: 361

    Lv Baida. Laser optics: beam characterization, propagation and transformation, resonator technology and physics[M]. 3rd ed. Beijing: Higher Education Press, 2003: 361
    [20] Yang Tianli, Yang Jing, Zhou Wangzhe, et al. Kilowatt-level 100 kHz nanosecond pulsed laser amplifier via a 205-watt seeding[C]//Proceedings of SPIE 12459, Sixth International Symposium on Laser Interaction with Matter. 2022: 1245915.
  • 加载中
图(8)
计量
  • 文章访问数:  387
  • HTML全文浏览量:  116
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-13
  • 修回日期:  2023-05-09
  • 录用日期:  2023-04-27
  • 网络出版日期:  2023-05-16
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回