留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能型多功能激光防护镜与自动探测告警复合装置

罗振坤 马琼 崔玉芳 康宏向

罗振坤, 马琼, 崔玉芳, 等. 智能型多功能激光防护镜与自动探测告警复合装置[J]. 强激光与粒子束, 2023, 35: 099001. doi: 10.11884/HPLPB202335.230042
引用本文: 罗振坤, 马琼, 崔玉芳, 等. 智能型多功能激光防护镜与自动探测告警复合装置[J]. 强激光与粒子束, 2023, 35: 099001. doi: 10.11884/HPLPB202335.230042
Luo Zhenkun, Ma Qiong, Cui Yufang, et al. Composite device of intelligent multifunctional laser protective goggles and automatic detection and alarm[J]. High Power Laser and Particle Beams, 2023, 35: 099001. doi: 10.11884/HPLPB202335.230042
Citation: Luo Zhenkun, Ma Qiong, Cui Yufang, et al. Composite device of intelligent multifunctional laser protective goggles and automatic detection and alarm[J]. High Power Laser and Particle Beams, 2023, 35: 099001. doi: 10.11884/HPLPB202335.230042

智能型多功能激光防护镜与自动探测告警复合装置

doi: 10.11884/HPLPB202335.230042
详细信息
    作者简介:

    罗振坤,luozhenkun@hotmail.com

    通讯作者:

    康宏向,khx007@163.com

  • 中图分类号: R852.7

Composite device of intelligent multifunctional laser protective goggles and automatic detection and alarm

  • 摘要: 设计研制智能型多功能激光防护镜与自动探测告警一体化复合装置,主要用于各类激光辐射人眼损伤的防护和预警。对防护镜和探测告警系统及智能化复合防护技术进行研究和性能测试,利用防护镜与告警装置的信号互联和联动作用,使防护镜双镜复合,并发出告警信号。结果表明,当激光防护告警复合装置探测到激光入侵时均能以不同方式发出各种告警信号和复合防护响应,包括不同颜色灯光闪烁、音响和振动告警,驱使两个防护镜单元镜组复合,对532 nm、1 064 nm、470 nm、808 nm和700~2 000 nm特定波长激光和超连续谱激光进行有效防护,可通过无线信号互联实现集群联动告警和防护。该激光防护镜与探测告警复合装置具有智能化、模块化、多功能集成的特点,各项性能符合设计要求。
  • 图  1  多功能激光防护镜与激光探测告警复合装置框图

    Figure  1.  Block diagram of multifunctional laser protection goggles and laser detection and alarm composite device

    图  2  多功能激光防护镜与激光防护探测告警复合装置

    Figure  2.  Multifunctional laser protection goggles and laser protection detection and alarm composite device

    图  3  多功能激光防护镜光学结构原理图

    Figure  3.  Schematic diagram of optical structure of multifunctional laser protective goggles

    图  4  激光探测告警电路框图

    Figure  4.  Block diagram of laser detection and alarm circuit

    图  5  激光防护性能测试光路图

    Figure  5.  Optical path diagram of laser protection performance test

    图  6  连续激光和超连续谱激光防护性能测试平台

    Figure  6.  Continuous laser and supercontinuum laser protection performance test platform

    图  7  脉冲激光防护与告警性能测试平台

    Figure  7.  Pulse laser protection and alarm performance test platform

    表  1  多波长激光防护镜防护性能测试结果

    Table  1.   Protection performance test results of multi-wavelength laser protective spectacles

    sample numberemission modeaverage optical density valuerelative standard deviation/%
    532 nm1064 nm470 nm808 nm532 nm1064 nm470 nm808 nm
    A-SL4-001 M 4.31 4.11 0.48 1.69
    A-SL4-002 M 4.98 4.00 2.51 1.61
    A-SL4-003 M 4.01 3.97 1.55 1.81
    B-BL10-001 M 4.72 0.28
    B-BL10-002 M 4.51 2.59
    B-BL10-003 M 4.46 1.39
    B-BL15-001 M 5.24 0.11
    B-BL15-002 M 4.60 0.22
    B-BL15-003 M 4.61 0.20
    C-FXX1-001 M 1.87 0.55
    D-NM1-001 M 4.05 4.00 0.38 1.61
    D-NM7-001 M 2.56 4.15 0.74 1.25
    E-JZF1-001 M 4.98 4.72 0.58 0.63
    E-JZF1-002 M 4.83 4.18 0.64 0.79
    F-JT1-001 M 5.93 4.51 0.52 0.76
    G-GD-01-001* M 5.83 4.76 0.07 0.06
    G-GD-02-002** M 4.72 4.74 0.28 0.07
    H-QX1-001 M 2.24 0.89
    A-SL1-001 L 4.07 4.06 0.04 0.46
    A-SL1-002 L 4.05 4.16 0.51 0.34
    A-SL1-003 L 3.96 4.08 0.52 0.62
    A-SL4-001 L 4.65 4.34 1.99 1.36 0.03 0.52
    A-SL4-002 L 4.66 5.05 2.11 1.37 1.16 0.34
    A-SL4-003 L 4.31 4.25 2.15 0.58 0.35 0.67
    B-BL10-001 L 1.67 0.27
    B-BL15-001 L 5.96 2.70
    B-BL1-001 L 3.53 0.24
    B-BL3-001 L 4.65 0.20
    D-NM3-001 L 3.28 3.44 0.48 0.78
    D-NM4-001 L 3.25 3.38 0.68 0.77
    D-NM7-001 L 2.73 3.12 0.22 0.31
    Note: M− pulse laser; L − continuous laser; * static; ** dynamic
    A − optical plastic absorption type (SL);
    B − colored optical glass absorption type (BL);
    C − nonlinear optical material absorption type (FXX);
    D − nano-composite optical material absorption type (NM);
    E − glass absorption + dielectric film reflection compound type (JZF);
    F − polycarbonate absorption type (JT);
    G − photoelectric switch polarization attenuation type (GD);
    H − holographic grating diffraction attenuation type (QX).
    下载: 导出CSV

    表  2  复合式多波长激光防护镜防护性能测试结果

    Table  2.   Protection performance test results of composite multi-wavelength laser protective spectacles

    sample numberemission modeaverage optical density valuerelative standard deviation/%
    532 nm1064 nm470 nm808 nm532 nm1064 nm470 nm808 nm
    SL4-BL10-BL15 * M 5.33 6.72 0.14 0.12
    SL4-BL10-BL15 ** M 5.32 6.71 0.26 0.31
    SL4-BL10-BL15 # M 5.18 6.33 0.37 0.15
    SL4-BL10-BL15 # # M 5.18 6.33 0.14 0.06
    SL4-BL10-BL15 L 4.43 4.18 5.55 0.95 0.39 1.42
    SL4-BL10--001 L 4.58 4.76 5.33 1.56 0.35 0.62
    SL4-BL15--001 L 4.45 4.85 5.49 1.04 0.89 2.71
    Note: M − pulse laser; L − continuous laser
    * protection spectacles 1 left; ** protection spectacles 1 right; # protection spectacles 2 left; # # protection spectacles 2 right
    下载: 导出CSV

    表  3  复合式超连续谱激光防护镜防护性能测试结果

    Table  3.   Protection performance test results of composite supercontinuum laser protective spectacles

    sample
    number
    ODSODSODSODSODSODSODSmean
    optical
    density
    mean relative
    standard
    deviation/%
    532 nm1 064 nm470 nm808 nm1 400 nm1 700 nm1 800 nm
    SL4-BL10-BL15 * 2.10 0.46 2.08 0.92 2.26 0.21 2.29 0.48 4.12 0.62 3.72 0.11 3.79 1.04 2.91 0.55
    SL4-BL10-BL15 ** 2.08 0.72 2.05 0.70 2.26 0.37 2.31 0.48 3.99 1.12 3.80 0.58 3.84 0.44 2.90 0.63
    SL4-BL10-BL15 # 2.13 0.85 2.06 0.55 2.32 0.35 2.35 0.43 4.14 0.33 3.88 1.15 3.81 0.68 2.96 0.62
    SL4-BL10-BL15 # # 2.11 0.47 2.07 0.49 2.30 0.46 2.37 0.55 4.12 1.07 3.84 0.78 3.82 0.89 2.95 0.67
    Note: OD − optical density; S − relative standard deviation (%); * protection spectacles 1 left; ** protection spectacles 1 right; # protection spectacles 2 left; # # protection spectacles 2 right
    下载: 导出CSV

    表  4  超连续谱激光防护镜分镜防护性能测试结果

    Table  4.   Test results of protection performance of supercontinuum laser protective spectacles

    sample numberODSODSODSODSmean optical
    density
    mean relative
    standard
    deviation/%
    532 nm1 064 nm470 nm808 nm
    SL-4 1.06 0.19 1.69 0.48 1.09 0.20 1.19 0.20 1.26 0.27
    BL10 0.69 1.39 1.39 0.32 0.69 0.27 0.69 0.23 0.87 0.55
    BL15 1.20 0.35 2.04 0.40 1.20 0.35 1.33 0.17 1.44 0.32
    Note: OD − optical density; S − relative standard deviation (%)
    下载: 导出CSV

    表  5  激光防护探测告警性能测试结果

    Table  5.   Test results of laser protection detection and alarm performance

    sample
    number
    incidence
    angle
    EHSEHSlaser alarm response
    532 nm1 064 nmlightsoundvibrationdual-spectacles
    recombination
    cluster
    linkage
    LZK-01 +30 49.53 2.53 1.78 18.32 0.93 0.58 Y Y Y Y Y
    +15 49.48 2.52 2.94 18.03 0.92 1.20 Y Y Y Y Y
    41.94 2.14 0.79 20.01 1.02 0.52 Y Y Y Y Y
    −15 48.09 2.45 2.14 18.59 0.95 2.21 Y Y Y Y Y
    −30 48.33 2.47 1.45 18.48 0.94 2.12 Y Y Y Y Y
    LZK-02 +30 68.34 3.49 0.69 43.31 2.21 1.54 Y Y Y Y Y
    +15 68.29 3.48 1.08 43.69 2.23 2.25 Y Y Y Y Y
    66.08 3.37 2.89 44.33 2.26 0.85 Y Y Y Y Y
    −15 68.43 3.49 0.93 43.55 2.22 1.84 Y Y Y Y Y
    −30 68.76 3.51 0.67 44.16 2.25 0.93 Y Y Y Y Y
    Note: E − average laser irradiation energy (nJ); H − average laser radiant exposure (10−7 J/cm2); S − relative standard deviation (%); Y − responsive; N − no response
    下载: 导出CSV
  • [1] 赵志刚, 刘虎, 尚乾, 等. 激光驾束制导弹药发展现状及在俄乌冲突中的应用[J]. 激光与红外, 2022, 52(12):1747-1751

    Zhao Zhigang, Liu Hu, Shang Qian, et al. Development status of laser beam riding guidance munitions and its application in Russia Ukraine conflict[J]. Laser & Infrared, 2022, 52(12): 1747-1751
    [2] 宋振之, 韩道文, 吴中伟, 等. 激光半主动制导导弹作战效能影响分析[J]. 激光与红外, 2022, 52(2):253-258

    Song Zhenzhi, Han Daowen, Wu Zhongwei, et al. Analysis of operational effectiveness of laser semi-active guided missile[J]. Laser & Infrared, 2022, 52(2): 253-258
    [3] 曹晓荷, 朱斌, 尚建蓉, 等. 激光制导伪随机编码信号解码技术[J]. 激光技术, 2021, 45(2):155-161

    Cao Xiaohe, Zhu Bin, Shang Jianrong, et al. Decoding technique of laser-guided pseudo-random coded signals[J]. Laser Technology, 2021, 45(2): 155-161
    [4] 张小龙, 徐广平, 曹昌东. 舰面光电制导设备远程激光测距技术问题研究[J]. 激光与红外, 2022, 52(8):1177-1181

    Zhang Xiaolong, Xu Guangping, Cao Changdong. Research on long-range laser ranging technology of ship surface photoelectric guidance equipment[J]. Laser & Infrared, 2022, 52(8): 1177-1181
    [5] 张德斌, 江清波, 王晔, 等. 国外地面激光测距目标指示器的发展现状[J]. 激光技术, 2021, 45(1):126-130

    Zhang Debin, Jiang Qingbo, Wang Ye, et al. The abroad development of laser target designation[J]. Laser Technology, 2021, 45(1): 126-130
    [6] 朱峻可, 李丽娟, 林雪竹. 激光雷达测量系统的测量场规划研究[J]. 激光技术, 2021, 45(1):99-104

    Zhu Junke, Li Lijuan, Lin Xuezhu. Research on the measurement field planning of Lidar measurement system[J]. Laser Technology, 2021, 45(1): 99-104
    [7] 梁晓峰, 杨泽后, 王顺艳, 等. 基于差分吸收激光雷达有毒有害气体遥测进展[J]. 激光技术, 2021, 45(1):53-60

    Liang Xiaofeng, Yang Zehou, Wang Shunyan, et al. Development of toxic and harmful gas remote sense based on differential absorption Lidar technology[J]. Laser Technology, 2021, 45(1): 53-60
    [8] 罗振坤, 王秋华. 化学/生物战剂激光雷达探测技术[J]. 医疗卫生装备, 2011, 32(1):81-84

    Luo Zhenkun, Wang Qiuhua. Lidar detection technology for chemical/biological agents[J]. Chinese Medical Equipment Journal, 2011, 32(1): 81-84
    [9] Shi L K, Pei Y, Yun Q J, et al. Agent-based effectiveness evaluation method and impact analysis of airborne laser weapon system in cooperation combat[J]. Chinese Journal of Aeronautics, 2023, 36(4): 442-454. doi: 10.1016/j.cja.2022.11.006
    [10] Jabczyński J K, Gontar P. Impact of atmospheric turbulence on coherent beam combining for laser weapon systems[J]. Defence Technology, 2021, 17(4): 1160-1167. doi: 10.1016/j.dt.2020.06.021
    [11] 易亨瑜, 齐予, 易欣仪, 等. 美国舰载激光系统的成熟度评估[J]. 应用光学, 2021, 42(1):9-15 doi: 10.5768/JAO202142.0101002

    Yi Hengyu, Qi Yu, Yi Xinyi, et al. Technology readiness level assessment on ship-borne laser weapon system[J]. Journal of Applied Optics, 2021, 42(1): 9-15 doi: 10.5768/JAO202142.0101002
    [12] 任国光. 高能激光武器的现状与发展趋势[J]. 激光与光电子学进展, 2008, 45(9):62-69

    Ren Guoguang. Current situation and development trend of high energy laser weapon[J]. Laser & Optoelectronics Progress, 2008, 45(9): 62-69
    [13] 刘小强, 杨修林, 陆培国, 等. 激光武器控制系统研究[J]. 激光与红外, 2022, 52(8):1238-1245

    Liu Xiaoqiang, Yang Xiulin, Lu Peiguo, et al. Analysis of control system for high energy laser system[J]. Laser & Infrared, 2022, 52(8): 1238-1245
    [14] 罗磊, 谭碧涛. 舰载激光武器作战运用研究[J]. 激光与红外, 2022, 52(7):1058-1063

    Luo Lei, Tan Bitao. Research on operational application of shipborne laser weapon[J]. Laser & Infrared, 2022, 52(7): 1058-1063
    [15] 易亨瑜, 锁兴文, 易欣仪, 等. 美国运输机机载激光系统研制进展[J]. 激光技术, 2021, 45(2):174-181 doi: 10.7510/jgjs.issn.1001-3806.2021.02.008

    Yi Hengyu, Suo Xingwen, Yi Xinyi, et al. Development of AC-130J AHEL system[J]. Laser Technology, 2021, 45(2): 174-181 doi: 10.7510/jgjs.issn.1001-3806.2021.02.008
    [16] 李朝龙, 崔旭涛, 赵寒, 等. 战术激光武器陆战场运用思考[J]. 激光与红外, 2020, 50(11):1298-1302

    Li Chaolong, Cui Xutao, Zhao Han, et al. Research on the use of tactical laser weapons in the field[J]. Laser & Infrared, 2020, 50(11): 1298-1302
    [17] 吴玲, 卢俊霖, 许俊飞. 激光武器反无人机集群建模与效能评估[J]. 激光与红外, 2022, 52(6):887-892

    Wu Ling, Lu Junlin, Xu Junfei. Modeling and effectiveness evaluation on UAV cluster interception using laser weapon systems[J]. Laser & Infrared, 2022, 52(6): 887-892
    [18] 杨剑波, 宗思光, 陈利斐. 舰载激光武器对典型无人机蜂群目标毁伤距离研究[J]. 激光与红外, 2022, 52(5):745-751

    Yang Jianbo, Zong Siguang, Chen Lifei. Research on destruction distance of shipborne laser weapon to typical UAV swarm target[J]. Laser & Infrared, 2022, 52(5): 745-751
    [19] 王喆, 许凌飞, 顾村锋. 针对复合材料无人机的激光武器系统杀伤效能仿真计算[J]. 空天防御, 2018, 1(1):63-68

    Wang Zhe, Xu Lingfei, Gu Cunfeng. Simulation of damage effect of laser weapon system against composite unmanned aerial vehicle[J]. Air & Space Defense, 2018, 1(1): 63-68
    [20] 徐国亮, 赵书斌, 王勇. 舰载激光武器拦截无人机技术指标分析[J]. 现代防御技术, 2015, 43(5):12-17 doi: 10.3969/j.issn.1009-086x.2015.05.003

    Xu Guoliang, Zhao Shubin, Wang Yong. Technology analysis of shipborne high energy laser weapon systems intercepting UAVs[J]. Modern Defense Technology, 2015, 43(5): 12-17 doi: 10.3969/j.issn.1009-086x.2015.05.003
    [21] 马琼, 范应威, 梁洁, 等. 超连续谱激光可见谱段致人眼眩目效应研究[J]. 激光生物学报, 2020, 29(1):75-79

    Ma Qiong, Fan Yingwei, Liang Jie, et al. Research on dazzling effects of human eyes induced by the visible band irradiation of supercontinuum laser[J]. Acta Laser Biology Sinica, 2020, 29(1): 75-79
    [22] Coffey K, Abel L, Karas R, et al. Effect of laser eye protection devices on color perception[J]. Journal of the Optical Society of America A, 2023, 40(3): A9-A15. doi: 10.1364/JOSAA.477131
    [23] Zhang Q, Ma Z, Gao L H, et al. Laser stealth and laser protection properties of oxide-carbide coatings prepared by atmospheric plasma spraying[J]. Ceramics International, 2022, 48(21): 31389-31396. doi: 10.1016/j.ceramint.2022.07.022
    [24] Xu Z, Zhang L, Bai G H, et al. Hybrid effect of nanoparticles-containing atomization system for highly efficient angle-independent laser protection[J]. Materials Letters, 2022, 325: 132845. doi: 10.1016/j.matlet.2022.132845
    [25] Legall H, Schwanke C, Bonse J, et al. X-ray radiation protection aspects during ultrashort laser processing[J]. Journal of Laser Applications, 2020, 32: 022004. doi: 10.2351/1.5134778
    [26] 罗振坤, 王秋华, 高光煌, 等. 激光辐射多功能集成防护镜光学特性与复合技术[J]. 激光技术, 2011, 35(4):486-491 doi: 10.3969/j.issn.1001-3806.2011.04.012

    Luo Zhenkun, Wang Qiuhua, Gao Guanghuang, et al. Optical characteristics and compound technologies of multifunction protection goggles against laser radiation[J]. Laser Technology, 2011, 35(4): 486-491 doi: 10.3969/j.issn.1001-3806.2011.04.012
    [27] Shi J, Zhang R, Niu J Q, et al. Research on two-dimensional laser warning integrated detection technology[J]. Optik, 2022, 270: 170034. doi: 10.1016/j.ijleo.2022.170034
    [28] Tayel M, Shehata M, Mohamed A, et al. Robust design and analysis for opto-mechanical two array laser warning system[J]. Defence Technology, 2022. https://doi.org/10.1016/j.dt.2022.12.009.
    [29] Zhang R, Yang X M, Shi J, et al. Integrated optical system design for large-field-of-view and broad-spectrum laser warning[J]. Applied Optics, 2022, 61(14): 4187-4194. doi: 10.1364/AO.456928
    [30] Wojtanowski J, Jakubaszek M, Zygmunt M. Freeform mirror design for novel laser warning receivers and laser angle of incidence sensors[J]. Sensors, 2020, 20: 2569. doi: 10.3390/s20092569
    [31] El-Sherif A F, Ayoub H S, El-Sharkawy Y H, et al. The design and implementation of photoacoustic based laser warning receiver for harsh environments[J]. Optics & Laser Technology, 2018, 98: 385-396.
    [32] 刘彤宇, 闫秀生, 王恒立. 国外机载导弹逼近告警装备发展趋势分析[J]. 激光与红外, 2022, 52(8):1107-1111

    Liu Tongyu, Yan Xiusheng, Wang Hengli. Analysis on the trend of foreign airborne missile approach warning technology[J]. Laser & Infrared, 2022, 52(8): 1107-1111
    [33] GJB 470A-97, 军用激光器危害的控制和防护[S]

    GJB 470A-97, Control and protection for military laser hazard[S]
    [34] 罗振坤, 王秋华, 刘海峰, 等. 基于VO2薄膜相变的强光限幅机制与复合防护技术[J]. 医疗卫生装备, 2010, 31(8):27-29 doi: 10.3969/j.issn.1003-8868.2010.08.011

    Luo Zhenkun, Wang Qiuhua, Liu Haifeng, et al. Optical limiting mechanism and protective technology for strong light based on phase transition of VO2 film[J]. Chinese Medical Equipment Journal, 2010, 31(8): 27-29 doi: 10.3969/j.issn.1003-8868.2010.08.011
    [35] 罗振坤, 刘海峰, 孙嵘, 等. 激光防护镜自动检定装置与技术研究[J]. 医疗卫生装备, 2009, 30(7):17-20 doi: 10.3969/j.issn.1003-8868.2009.07.006

    Luo Zhenkun, Liu Haifeng, Sun Rong, et al. Research of the automatic verification device and testing technology for laser protective spectacles[J]. Chinese Medical Equipment Journal, 2009, 30(7): 17-20 doi: 10.3969/j.issn.1003-8868.2009.07.006
    [36] 罗振坤, 孙嵘, 王秋华, 等. 激光防护镜自动检定装置测量不确定度的评定[J]. 医疗卫生装备, 2009, 30(12):8-11 doi: 10.3969/j.issn.1003-8868.2009.12.003

    Luo Zhenkun, Sun Rong, Wang Qiuhua, et al. Measurement uncertainty evaluation of automatic verification device for laser protective spectacles[J]. Chinese Medical Equipment Journal, 2009, 30(12): 8-11 doi: 10.3969/j.issn.1003-8868.2009.12.003
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  378
  • HTML全文浏览量:  165
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-28
  • 修回日期:  2023-07-14
  • 录用日期:  2023-06-27
  • 网络出版日期:  2023-07-22
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回