留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率超宽带组合天线的设计与实验

吴昊 屈劲 陈世韬 余川 刘良 石小燕

吴昊, 屈劲, 陈世韬, 等. 高功率超宽带组合天线的设计与实验[J]. 强激光与粒子束, 2023, 35: 073001. doi: 10.11884/HPLPB202335.230065
引用本文: 吴昊, 屈劲, 陈世韬, 等. 高功率超宽带组合天线的设计与实验[J]. 强激光与粒子束, 2023, 35: 073001. doi: 10.11884/HPLPB202335.230065
Wu Hao, Qu Jin, Chen Shitao, et al. Design and experiment of ultra-wideband combined antenna for high-power microwave[J]. High Power Laser and Particle Beams, 2023, 35: 073001. doi: 10.11884/HPLPB202335.230065
Citation: Wu Hao, Qu Jin, Chen Shitao, et al. Design and experiment of ultra-wideband combined antenna for high-power microwave[J]. High Power Laser and Particle Beams, 2023, 35: 073001. doi: 10.11884/HPLPB202335.230065

高功率超宽带组合天线的设计与实验

doi: 10.11884/HPLPB202335.230065
基金项目: 高功率微波重点实验室基金项目(61426050303-2)
详细信息
    作者简介:

    吴 昊,wuhao@ieee.org

    通讯作者:

    余 川, yuchuan@263.net

  • 中图分类号: TN822

Design and experiment of ultra-wideband combined antenna for high-power microwave

  • 摘要: 为满足高功率纳秒脉冲的发射需求,设计了一种适用于高功率微波的超宽带组合天线,对比了将点馈式巴伦和直馈式巴伦应用于高功率超宽带组合天线后天线的驻波曲线和表面电场分布情况,分析了组合天线阻抗与尺寸的关系,利用Klopfenstein阻抗渐变线降低反射,利用可调平板调整天线磁偶极子面积以提升天线低频性能,并通过驻波测试实验加以验证。在此基础上,进行了高功率微波实验,在全底宽3 ns、峰-峰值121 kV、中心频率329 MHz高功率双极脉冲的激励下,可实现功率容量73 MW,有效电压增益1.97。
  • 图  1  高功率超宽带组合天线结构图

    Figure  1.  Photograph of the HP-UWB combined antenna

    图  2  高功率超宽带组合天线TEM喇叭部分结构图

    Figure  2.  Sketch of the TEM horn part of the HP-UWB combined antenna

    图  3  直馈式巴伦模型图

    Figure  3.  Sketch of the tapered-slot balun

    图  4  使用不同巴伦时高功率超宽带组合天线的驻波曲线

    Figure  4.  Comparison of VSWR of HP-UWB combined antennas with different baluns

    图  5  不同巴伦及TEM喇叭上板的最大电场分布

    Figure  5.  Electric field distribution of different baluns with upper plate of TEM horn

    图  6  不同磁偶极子面积的高功率超宽带组合天线的驻波曲线对比

    Figure  6.  Comparison of VSWR of HP-UWB combined antennas with different area of magnetic dipole

    图  7  阻抗变换段模型图

    Figure  7.  Sketch of the impedance transformer

    图  8  阻抗变换段的驻波曲线

    Figure  8.  VSWR of the impedance transformer

    图  9  驻波测试实验平台

    Figure  9.  Experimental platform for VSWR testing

    图  10  高功率超宽带组合天线驻波曲线的仿真与实测结果

    Figure  10.  Measured and simulation results of VSWR of HP-UWB combined antenna

    图  11  实验用高功率双极脉冲波形

    Figure  11.  Waveform of the high-power bipolar pulse for experiment

    图  12  归一化实验用高功率双极脉冲频谱

    Figure  12.  Normalized spectrum of the high-power bipolar pulse for experiment

    图  13  天线辐射场波形(10 m)

    Figure  13.  Waveform of radiation field of the antenna at 10 m

    图  14  天线辐射场归一化频谱(10 m)

    Figure  14.  Normalized spectrum of radiation field of the antenna at 10 m

  • [1] Kraus J D, Marhefka R J. Antennas for all applications[M]. 3rd ed. Boston: McGraw-Hill, 2008.
    [2] Smith P D, Cloude S R. Ultra-wideband, short-pulse electromagnetics, 5[M]. New York: Kluwer Academic/Plenum, 2002.
    [3] 徐刚, 陆巍, 丁恩燕, 等. 紧凑型宽谱高功率微波辐射器仿真设计[J]. 强激光与粒子束, 2015, 27:043001 doi: 10.11884/HPLPB201527.043001

    Xu Gang, Lu Wei, Ding Enyan, et al. Simulation design of an compact mesoband high power microwave radiator[J]. High Power Laser and Particle Beams, 2015, 27: 043001 doi: 10.11884/HPLPB201527.043001
    [4] Koshelev V I, Buyanov Y I, Koval’chuk B M, et al. High-power ultrawideband electromagnetic pulse radiation[C]//Proceedings of the SPIE 3158, Intense Microwave Pulses V. 1997.
    [5] Andreev Y A, Buyanov Y I, Efremov A M, et al. Gigawatt-power-level ultrawideband radiation generator[C]//Digest of Technical Papers. 12th IEEE International Pulsed Power Conference (Cat. No. 99CH36358). 1999: 1337-1340.
    [6] Gubanov V P, Efremov A M, Koshelev V I, et al. Sources of high-power ultrawideband radiation pulses with a single antenna and a multielement array[J]. Instruments and Experimental Techniques, 2005, 48(3): 312-320. doi: 10.1007/s10786-005-0057-3
    [7] 周海京, 丁武, 孟凡宝, 等. 新型超宽带短脉冲天线的设计[C]//中国工程物理研究院科技年报(2001). 2001: 228-229

    Zhou Haijing, Ding Wu, Meng Fanbao, et al. Design of a new type of ultra-wideband short-pulse antenna[C]//Annual Report of China Academy of Engineering Physics (2001). 2001: 228-229
    [8] 席晓莉, 原艳宁, 易超龙, 等. 电-磁振子组合型超宽带天线数值分析[J]. 强激光与粒子束, 2007, 19(1):103-106

    Xi Xiaoli, Yuan Yanning, Yi Chaolong, et al. Numerical analysis of electric-magnetic vibrator combined ultrawideband antenna[J]. High Power Laser and Particle Beams, 2007, 19(1): 103-106
    [9] 原艳宁, 席晓莉, 樊亚军. 不同渐变方式的喇叭结构对电-磁振子组合型超宽带天线特性的影响[J]. 强激光与粒子束, 2007, 19(6):971-974

    Yuan Yanning, Xi Xiaoli, Fan Yajun. Influence of horn structure on electric-magnetic vibrator combined UWB antenna characteristic[J]. High Power Laser and Particle Beams, 2007, 19(6): 971-974
    [10] 易超龙, 朱四桃, 樊亚军, 等. 超宽带天线辐射中心的时域测量方法[J]. 强激光与粒子束, 2011, 23(5):1312-1314 doi: 10.3788/HPLPB20112305.1312

    Yi Chaolong, Zhu Sitao, Fan Yajun, et al. Time-domain method of determining radiation centers of ultra wideband antennas[J]. High Power Laser and Particle Beams, 2011, 23(5): 1312-1314 doi: 10.3788/HPLPB20112305.1312
    [11] 易超龙, 樊亚军, 袁雪林, 等. 一种新型超宽带喇叭阵列天线[J]. 太赫兹科学与电子信息学报, 2016, 14(3):409-412

    Yi Chaolong, Fan Yajun, Yuan Xuelin, et al. A novel compact Ultra Wide-Band horn array[J]. Journal of Terahertz Science and Electronic Information Technology, 2016, 14(3): 409-412
    [12] Wang Shaofei, Xie Yanzhao. Design and optimization of high-power UWB combined antenna based on Klopfenstein impedance taper[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 6960-6967. doi: 10.1109/TAP.2017.2765543
    [13] Wang Shaofei, Xie Yanzhao, Gao Mingxiang, et al. Optimizing high-power ultra-wideband combined antennas for maximum radiation within finite aperture area[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(2): 834-842. doi: 10.1109/TAP.2018.2882615
    [14] Wu Jiangniu, Zhao Zhiqin, Nie Zaiping, et al. A printed UWB vivaldi antenna using stepped connection structure between slotline and tapered patches[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 698-701. doi: 10.1109/LAWP.2014.2314739
    [15] Pozar D M. Microwave engineering[M]. 4th ed. Hoboken: John Wiley & Sons, Inc. , 2011.
    [16] Wu Hao, Yu Chuan. Design and simulation of ultra-wideband combined antenna for high-power microwave[C]//2022 IEEE 9th International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE). 2022: 203-207.
  • 加载中
图(14)
计量
  • 文章访问数:  384
  • HTML全文浏览量:  127
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-29
  • 修回日期:  2023-05-08
  • 录用日期:  2023-05-08
  • 网络出版日期:  2023-05-15
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回