留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学元件激光预处理技术研究进展及其应用

张晶晶 杨峰 寇洋 王灼寒 袁磊 高宏伟 薄勇 彭钦军

张晶晶, 杨峰, 寇洋, 等. 光学元件激光预处理技术研究进展及其应用[J]. 强激光与粒子束, 2023, 35: 081001. doi: 10.11884/HPLPB202335.230067
引用本文: 张晶晶, 杨峰, 寇洋, 等. 光学元件激光预处理技术研究进展及其应用[J]. 强激光与粒子束, 2023, 35: 081001. doi: 10.11884/HPLPB202335.230067
Zhang Jingjing, Yang Feng, Kou Yang, et al. Research progress and application of laser preconditioning technology for optical components[J]. High Power Laser and Particle Beams, 2023, 35: 081001. doi: 10.11884/HPLPB202335.230067
Citation: Zhang Jingjing, Yang Feng, Kou Yang, et al. Research progress and application of laser preconditioning technology for optical components[J]. High Power Laser and Particle Beams, 2023, 35: 081001. doi: 10.11884/HPLPB202335.230067

光学元件激光预处理技术研究进展及其应用

doi: 10.11884/HPLPB202335.230067
基金项目: 国家自然科学基金项目(61875208)
详细信息
    作者简介:

    张晶晶,viviank0921@163.com

    通讯作者:

    杨 峰,yangfeng@mail.ipc.ac.cn

    高宏伟,gaohongwei@mail.ipc.ac.cn

  • 中图分类号: TN249

Research progress and application of laser preconditioning technology for optical components

  • 摘要:

    光学元件中的杂质和缺陷会引起其激光损伤阈值的大幅降低,现阶段这一问题已成为激光装置向高功率、高能量方向发展的“瓶颈”,亟待解决。在对光学元件激光损伤的研究中发现,用低于光学元件损伤阈值的激光对元件表面进行预处理,可以有效提高光学元件的抗激光损伤能力。对激光预处理技术的提出背景、定性作用机理、定量理论模型及国内外技术应用现状进行了概述。并且介绍了一种可在薄膜制备过程中进行原位实时激光预处理的新型薄膜制备技术。最后指出,激光预处理技术作为一种无污染,可有效改善光学薄膜、光学玻璃、光学晶体元件损伤阈值的最有效方法之一,其作用机理、实用化、仪器化还有待进一步发展。

  • 图  1  (a) CO2激光恒定功率扫描示意图;(b) 扫描方式示意图

    Figure  1.  (a) Schematic diagram of CO2 laser constant power scanning; (b) schematic diagram of scanning mode

    图  2  三种递增功率的主要方式

    Figure  2.  Three main modes of increasing power

    图  3  从损伤位置的散射(损伤)图像和相应的损伤束的空间轮廓中提取$\rho (\phi )$测量值的处理步骤

    Figure  3.  Processing steps to extract $\rho (\phi )$ measurements from a scattering (damage) map image of the damage site and the corresponding damaging beam’s space

    图  4  大面积激光预处理的设备装置图

    Figure  4.  Large-area conditioning facility layout

    图  5  损伤形貌的AFM显微照片

    Figure  5.  AFM micrographs of damage morphologies

    图  6  真空环境中与空气环境中,预处理与未处理受损区域的化学计量比

    Figure  6.  Stoichiometry of the damaged area with and without conditioning in vacuum environments compared to air environments

    图  7  双波长预处理和损伤测试实验系统图

    Figure  7.  Experimental system diagram of dual-wavelength conditioning and damage test

  • [1] Manes K R, Spaeth M L, Adams J J, et al. Damage mechanisms avoided or managed for NIF large optics[J]. Fusion Science and Technology, 2016, 69(1): 146-249. doi: 10.13182/FST15-139
    [2] Manenkov A A, Prokhorov A M. Laser-induced damage in solids[J]. Soviet Physics Uspekhi, 1986, 29(1): 104-122. doi: 10.1070/PU1986v029n01ABEH003117
    [3] Runkel M J, Nostrand M C. Overview of raster scanning for ICF-class laser optics[C]//Proceedings of SPIE 4932, Laser-Induced Damage in Optical Materials: 2002 and 7th International Workshop on Laser Beam and Optics Characterization. 2003: 136-146.
    [4] Kozlowski M R, Wolfe C R, Staggs M C, et al. Large area laser conditioning of dielectric thin film mirrors[R]. Livermore, CA: Lawrence Livermore National Lab. , 1990: 376-392.
    [5] Stewart A F, Guenther A H, Domann F E. The properties of laser annealed dielectric films[C]//Proc of SPIE, 1988, 756: 369-387.
    [6] Brauns B, Schäfer D, Wolf R, et al. Effect of the substrate preparation with CO2 laser radiation on the laser resistance of optical layers[J]. Thin Solid Films, 1986, 138(2): 157-162. doi: 10.1016/0040-6090(86)90389-5
    [7] Bessarab A V, Kormer S B, Pavlov D V, et al. Statistical relationship governing the surface damage of optical glass by wide laser radiation beams[J]. Soviet Journal of Quantum Electronics, 1977, 7(2): 181-185. doi: 10.1070/QE1977v007n02ABEH008865
    [8] Temple P A, Lowdermilk W H, Milam D. Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm[J]. Applied Optics, 1982, 21(18): 3249-3255. doi: 10.1364/AO.21.003249
    [9] Zhao Yuanan, Wang Tao, Zhang Dawei, et al. Laser conditioning and multi-shot laser damage accumulation effects of HfO2/SiO2 antireflective coatings[J]. Applied Surface Science, 2005, 245(1/4): 335-339.
    [10] Ling Xiulan, Zhao Yuanan, Li Dawei, et al. Laser conditioning of high-reflective and anti-reflective coatings in vacuum environments[J]. Optics Communications, 2010, 283(13): 2728-2731. doi: 10.1016/j.optcom.2010.03.014
    [11] 周业为, 谢建, 李育德. 光学薄膜激光预处理及其机理的研究[J]. 激光杂志, 1998, 19(5):5-7,17

    Zhou Yewei, Xie Jian, Li Yude. Investigation of laser conditioning of optical coatings and the mechanisms[J]. Laser Journal, 1998, 19(5): 5-7,17
    [12] Zhu Meiping, Yi Kui, Li Dawei, et al. Influence of SiO2 overcoat layer and electric field distribution on laser damage threshold and damage morphology of transport mirror coatings[J]. Optics Communications, 2014, 319: 75-79. doi: 10.1016/j.optcom.2014.01.014
    [13] 肖清泉, 房迪, 赵珂杰, 等. 电子束蒸发方法研究Mg2Si的薄膜及其光学带隙[J]. 红外与毫米波学报, 2017, 36(2):202-207

    Xiao Qingquan, Fang Di, Zhao Kejie, et al. Preparation and optical bandgap of Mg2Si film deposited by electron beam evaporation[J]. Journal of Infrared and Millimeter Waves, 2017, 36(2): 202-207
    [14] 代福, 杨李茗. HfO2/SiO2多层高反膜激光预处理技术[J]. 强激光与粒子束, 2013, 25(4):929-934 doi: 10.3788/HPLPB20132504.0929

    Dai Fu, Yang Liming. Laser conditioning methods for hafnia silica multilayer high-reflective coatings[J]. High Power Laser and Particle Beams, 2013, 25(4): 929-934 doi: 10.3788/HPLPB20132504.0929
    [15] Liu Hao, Chen Songlin, Wei Yaowei, et al. Laser conditioning on HfO2 film monitored by calorimeter[J]. Optics Express, 2012, 20(1): 698-705. doi: 10.1364/OE.20.000698
    [16] Arenberg J W, Mordaunt D W. On the role of wavelength in the laser conditioning effect[J]. Laser Induced Damage in Optical Materials, 1987, 756: 430-439.
    [17] Kerr N C, Emmony D C. The effect of laser annealing on laser-induced damage threshold[J]. Journal of Modern Optics, 1990, 37(4): 787-802. doi: 10.1080/09500349014550851
    [18] Xu Shizhen, Yuan Xiaodong, Yin Wei, et al. Effect of UV laser conditioning on fused silica in vacuum[J]. Optical Materials, 2009, 31(6): 1013-1016. doi: 10.1016/j.optmat.2008.11.016
    [19] Hu Guohang, Zhao Yuanan, Li Dawei, et al. Transmittance increase after laser conditioning reveals absorption properties variation in DKDP crystals[J]. Optics Express, 2012, 20(22): 25169-25180. doi: 10.1364/OE.20.025169
    [20] Guéhenneux G, Bouchut P H, Veillerot M, et al. Impact of outgassing organic contamination on laser-induced damage threshold of optics: effect of laser conditioning[C]//Proceedings of SPIE 5991, Laser-Induced Damage in Optical Materials: 2005, 59910F.
    [21] Swain J E, Stokowski S E, Milam D, et al. The effect of baking and pulsed laser irradiation on the bulk laser damage threshold of potassium dihydrogen phosphate crystals[J]. Applied Physics Letters, 1982, 41(1): 12-14. doi: 10.1063/1.93319
    [22] Frink M E, Arenberg J W, Mordaunt D W, et al. Temporary laser damage threshold enhancement by laser conditioning of antireflection-coated glass[J]. Applied Physics Letters, 1987, 51(6): 415-417. doi: 10.1063/1.98407
    [23] Wolfe C R. Laser conditioning of optical thin films[C]//Proceedings of SPIE 1438, Laser-Induced Damage in Optical Materials 1989. 1990: 143810.
    [24] Bloembergen N. Laser-induced electric breakdown in solids[J]. IEEE Journal of Quantum Electronics, 1974, 10(3): 375-386. doi: 10.1109/JQE.1974.1068132
    [25] Jones S C, Braunlich P, Casper R T, et al. Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials[J]. Optical Engineering, 1989, 28: 281039.
    [26] Feit M D, Rubenchik A M, Trenholme J B. Simple model of laser damage initiation and conditioning in frequency conversion crystals[C]//Proceedings of SPIE 5991, Laser-Induced Damage in Optical Materials: 2005, 59910W.
    [27] Feit M D, Rubenchik A M. Implications of nanoabsorber initiators for damage probability curves, pulselength scaling, and laser conditioning[C]//Proceedings of SPIE 5273, Laser-Induced Damage in Optical Materials: 2003. 2004.
    [28] Dyan A, Pommiès M, Duchateau G, et al. Revisited thermal approach to model laser-induced damage and conditioning process in KH2PO4 and D2xKH2(1-x)PO4 crystals[C]//Proceedings of SPIE 6403, Laser-Induced Damage in Optical Materials: 2006. 2006: 640307.
    [29] Liao Z M, Spaeth M L, Manes K, et al. Predicting laser-induced bulk damage and conditioning for deuterated potassium dihydrogen phosphate crystals using an absorption distribution model[J]. Optics Letters, 2010, 35(15): 2538-2540. doi: 10.1364/OL.35.002538
    [30] Liao Z M, Roussell R, Adams J J, et al. Defect population variability in deuterated potassium dihydrogen phosphate crystals[J]. Optical Materials Express, 2012, 2(11): 1612-1623. doi: 10.1364/OME.2.001612
    [31] Koldunov M, Manenkov A A. Theory of laser-induced inclusion-initiated damage in optical materials[J]. Optical Engineering, 2012, 51: 121811.
    [32] Duchateau G. Simple models for laser-induced damage and conditioning of potassium dihydrogen phosphate crystals by nanosecond pulses[J]. Optics Express, 2009, 17(13): 10434-10456. doi: 10.1364/OE.17.010434
    [33] Ferris K F, Chick L A, Exarhos G J, et al. Microstructural size effects on the dielectric response of inhomogeneous media[C]//Proceedings of SPIE 3244, Laser-Induced Damage in Optical Materials: 1997. 1998.
    [34] Brusasco R M, Penetrante B M, Butler J A, et al. CO2-laser polishing for reduction of 351-nm surface damage initiation in fused silica[C]//Proceedings of SPIE 4679, Laser-Induced Damage in Optical Materials: 2001. 2002.
    [35] Brusasco R M, Penetrante B M, Butler J A, et al. Localized CO2-laser treatment for mitigation of 351-nm damage growth in fused silica[C]//Proceedings of SPIE 4679, Laser-Induced Damage in Optical Materials: 2001. 2002.
    [36] 赵松楠, 吕海兵, 任寰, 等. CO2激光器在光学元件表面处理中的应用[J]. 激光与光电子学进展, 2006, 43(3):43-47

    Zhao Songnan, Lv Haibing, Ren Huan, et al. Applications of CO2 laser treatment in optical surface[J]. Laser and Optoelectronics Progress, 2006, 43(3): 43-47
    [37] 黄进, 赵松楠, 吕海兵, 等. 利用1064 nm激光预处理提高pickoff镜损伤阈值[J]. 强激光与粒子束, 2007, 19(5):728-732

    Huang Jin, Zhao Songnan, Lv Haibing, et al. Damage-threshold increase of pickoff optics using 1064nm wavelength laser[J]. High Power Laser and Particle Beams, 2007, 19(5): 728-732
    [38] Brusasco R M, Penetrante B M, Peterson J E, et al. UV-laser conditioning for reduction of 351-nm damage initiation in fused silica[C]//Proceedings of SPIE 4679, Laser-Induced Damage in Optical Materials: 2001. 2002.
    [39] Negres R A, DeMange P, Demos S G. Investigation of laser annealing parameters for optimal laser-damage performance in deuterated potassium dihydrogen phosphate[J]. Optics Letters, 2005, 30(20): 2766-2768. doi: 10.1364/OL.30.002766
    [40] 魏朝阳, 赵元安, 贺洪波, 等. 光学薄膜元件的激光预处理技术[J]. 激光与光电子学进展, 2005, 42(5):51-55

    Wei Chaoyang, Zhao Yuanan, He Hongbo, et al. Laser conditioning on optical thin film components[J]. Laser and Optoelectronics Progress, 2005, 42(5): 51-55
    [41] Stolz C J, Sheehan L M, Maricle S M, et al. Laser conditioning methods of hafnia-silica multilayer mirrors[C]//Proceedings of SPIE 3578, Laser-Induced Damage in Optical Materials: 1998. 1999.
    [42] DeMange P, Carr C W, Negres R A, et al. Laser annealing characteristics of multiple bulk defect populations within DKDP crystals[J]. Journal of Applied Physics, 2008, 104: 103103. doi: 10.1063/1.3000460
    [43] DeMange P, Negres R A, Carr C W, et al. Laser-induced defect reactions governing damage initiation in DKDP crystals[J]. Optics Express, 2006, 14(12): 5313-5328. doi: 10.1364/OE.14.005313
    [44] Adams J J, Weiland T L, Stanley J R, et al. Pulse length dependence of laser conditioning and bulk damage in KD2PO4[C]//Proceedings of SPIE 5647, Laser-Induced Damage in Optical Materials: 2004. 2005.
    [45] DeMange P, Carr C W, Negres R A, et al. Multiwavelength investigation of laser-damage performance in potassium dihydrogen phosphate after laser annealing[J]. Optics Letters, 2005, 30(3): 221-223. doi: 10.1364/OL.30.000221
    [46] Stolz C J, Weinzapfel C L, Rigatti A L, et al. Fabrication of meter-scale laser resistant mirrors for the National Ignition Facility: A fusion laser[C]//Proceedings of SPIE 5193, Advances in Mirror Technology for X-Ray, EUV Lithography, Laser, and Other Applications. 2003.
    [47] Sheehan L M, Kozlowski M R, Rainer F, et al. Large-area conditioning of optics for high-power laser systems[C]// Proceedings of SPIE 2114, Laser-Induced Damage in Optical Materials: 1993. 1994.
    [48] Adams J J, Jarboe J A, Carr C W, et al. Results of sub-nanosecond laser conditioning of KD2PO4 crystals[C]//Proceedings of SPIE 6403, Laser-Induced Damage in Optical Materials: 2006. 2007: 64031M.
    [49] Burnham A K, Hackel L A, Wegner P J, et al. Improving 351-nm damage performance of large-aperture fused silica and DKDP optics[C]//Proceedings of SPIE 4679, Laser-Induced Damage in Optical Materials: 2001. 2002.
    [50] Carr C W, Auerbach J M. Effect of multiple wavelengths on laser-induced damage in KH(2-x) DxPO4 crystals[J]. Optics Letters, 2006, 31(5): 595-597. doi: 10.1364/OL.31.000595
    [51] Fornier A, Cordillot C, Ausserre D, et al. Laser conditioning of optical coatings: some issues in the characterization by atomic force microscopy[C]//Proceedings of SPIE 2253, Optical Interference Coatings, 1994.
    [52] Staggs M C, Balooch M, Kozlowski M, et al. In-situ atomic-force microscopy of laser-conditioned and laser-damaged HfO2/SiO2 dielectric mirror coatings[C]//Proceedings of SPIE 1624, Laser-Induced Damage in Optical Materials: 1991, 1991.
    [53] Kaiser N, Anton B, Jaenchen H, et al. Laser conditioning of LaF3/MgF2 dielectric coatings for excimer lasers[C]//Proceedings of SPIE 2428, Laser-Induced Damage in Optical Materials: 1994. 1995.
    [54] Melninkaitis A, Vaninas A, Mirauskas J, et al. Laser conditioning of high reflectivity mirrors used in OPOs by 266 and 355 nm nanosecond pulses[C]//Proceedings of SPIE 7504, Laser-Induced Damage in Optical Materials: 2009. 2009: 750408.
    [55] Demange P P, Negres R A, Radousky H B, et al. Differentiation of defect populations responsible for bulk laser-induced damage in potassium dihydrogen phosphate crystals[J]. Optical Engineering, 2006, 45: 104205. doi: 10.1117/1.2363166
    [56] Maunier C, Bertussi B, Damiani D, et al. Comparison of ns and sub-ns laser conditioning of KDP and DKDP crystals for high power lasers[C]//Proceedings of SPIE 6720, Laser-Induced Damage in Optical Materials: 2007. 2007: 67201L.
    [57] 黄祖鑫, 蒋晓东, 任寰, 等. 激光预处理对光学元件膜层性能的影响[J]. 强激光与粒子束, 2004, 16(1):23-26

    Huang Zuxin, Jiang Xiaodong, Ren Huan, et al. Study of laser conditioning influence on properties of optical films[J]. High Power Laser and Particle Beams, 2004, 16(1): 23-26
    [58] 崔云, 赵元安, 晋云霞, 等. 激光预处理对增透膜阈值的影响[J]. 真空科学与技术学报, 2006, 26(4):321-325

    Cui Yun, Zhao Yuanan, Jin Yunxia, et al. Influence of laser conditioning on laser induced damage threshold of antireflection layer[J]. Chinese Journal of Vacuum Science and Technology, 2006, 26(4): 321-325
    [59] Li Dawei, Zhao Yuanan, Shao Jianda, et al. 0.532-μm laser conditioning of HfO2/SiO2 third harmonic separator fabricated by electron-beam evaporation[J]. Chinese Optics Letters, 2008, 6(5): 386-387. doi: 10.3788/COL20080605.0386
    [60] Liu Jie, Li Xu, Yu Zhenkun, et al. Effect of laser conditioning on the LIDT of 532nm HfO2/SiO2 reflectors[C]//Proceedings of SPIE 8786, Pacific Rim Laser Damage 2013: Optical Materials for High Power Lasers. 2013: 87860Z.
    [61] 刘杰, 张伟丽, 朱美萍. 532 nm HfO2/SiO2高反膜的激光预处理效应[J]. 强激光与粒子束, 2015, 27:032034 doi: 10.3788/HPLPB20152703.32034

    Liu Jie, Zhang Weili, Zhu Meiping. Laser conditioning effect of HfO2/SiO2 high reflectors at 532 nm[J]. High Power Laser and Particle Beams, 2015, 27: 032034 doi: 10.3788/HPLPB20152703.32034
    [62] Li Zehan, Du Juan, Zhao Yuanan, et al. Modeling the effect of nanosecond laser conditioning on the femtosecond laser-induced damage of optical films[J]. Optics Express, 2015, 23(11): 14774-14783. doi: 10.1364/OE.23.014774
    [63] 杨利红, 薛鹏成, 王涛, 等. 激光预处理对HfO2光学薄膜微观性能的影响[J]. 光电子·激光, 2018, 29(2):187-196

    Yang Lihong, Xue Pengcheng, Wang Tao, et al. Influence mechanism of laser conditioning on the microcosmic properties of HfO2 optical thin films[J]. Journal of Optoelectronics·Laser, 2018, 29(2): 187-196
    [64] 王建, 徐均琪, 李候俊, 等. 532nm激光辐照下ZnSe薄膜光学特性研究[J]. 应用光学, 2018, 39(6):929-935

    Wang Jian, Xu Junqi, Li Houjun, et al. Optical properties of ZnSe film under 532nm laser irradiation[J]. Journal of Applied Optics, 2018, 39(6): 929-935
    [65] Csajbók V, Bedöhazi Z, Nagy B J, et al. Ultrafast multipulse damage threshold of femtosecond high reflectors[J]. Applied Optics, 2018, 57(2): 340-343. doi: 10.1364/AO.57.000340
    [66] Zhang Lijuan, Jiang Xiaolong, Chen Jing, et al. Effect of laser conditioning on surface modification and laser damage resistance of SiO2 antireflection film[J]. Crystals, 2023, 13: 477. doi: 10.3390/cryst13030477
    [67] Guo Decheng, Jiang Xiaodong, Huang Jing, et al. Effect of UV laser conditioning on the structure of KDP crystal[J]. Advances in Condensed Matter Physics, 2014, 2014: 451048.
    [68] Wang Yueliang, Zhao Yuanan, Hu Guohang, et al. Mitigation of scattering defect and absorption of DKDP crystals by laser conditioning[J]. Optics Express, 2015, 23(12): 16273-16280. doi: 10.1364/OE.23.016273
    [69] 王凤蕊, 李青芝, 郭德成, 等. KDP晶体激光预处理参数的优化[J]. 红外与激光工程, 2017, 46:0321005

    Wang Fengrui, Li Qingzhi, Guo Decheng, et al. Laser pretreatment parameters optimization of KDP crystal[J]. Infrared and Laser Engineering, 2017, 46: 0321005
    [70] Wang Yao, Shao Jianda, Hu Guohang, et al. Laser-conditioning mechanism in KD2PO4 crystals revealed by fluorescence and Raman scattering analysis[J]. Optical Engineering, 2020, 59: 027105.
    [71] 吴金明, 赵元安, 汪琳, 等. 1064 nm激光和355 nm激光同时辐照DKDP晶体的耦合预处理效应[J]. 中国激光, 2019, 46:0501003 doi: 10.3788/CJL201946.0501003

    Wu Jinming, Zhao Yuanan, Wang Lin, et al. Coupling conditioning effect of DKDP crystals under simultaneous irradiation by 1064 nm laser and 355 nm laser[J]. Chinese Journal of Lasers, 2019, 46: 0501003 doi: 10.3788/CJL201946.0501003
    [72] Liu Zhichao, Geng Feng, Lei Xiangyang, et al. Effect of laser pulse duration and fluence on DKDP crystal laser conditioning[J]. Applied Optics, 2020, 59(17): 5240-5246. doi: 10.1364/AO.393097
    [73] 刘志超, 许乔, 雷向阳, 等. 大口径氘化磷酸二氢钾晶体离线亚纳秒激光预处理技术[J]. 物理学报, 2021, 70:074208 doi: 10.7498/aps.70.20201524

    Liu Zhichao, Xu Qiao, Lei Xiangyang, et al. Off-line sub-nanosecond laser conditioning on large aperture deuterated potassium dihydrogen phosphate crystal[J]. Acta Physica Sinica, 2021, 70: 074208 doi: 10.7498/aps.70.20201524
    [74] 李云飞, 史晋芳, 邱荣, 等. 355 nm和1064 nm双波长预处理对DKDP晶体损伤性质的影响[J]. 强激光与粒子束, 2022, 34:061003 doi: 10.11884/HPLPB202234.220060

    Li Yunfei, Shi Jinfang, Qiu Rong, et al. Effect of 355 nm and 1064 nm dual-wavelength conditioning on the bulk damage properties of DKDP crystal[J]. High Power Laser and Particle Beams, 2022, 34: 061003 doi: 10.11884/HPLPB202234.220060
    [75] 赵元安, 连亚飞, 李婷, 等. KDP类晶体的激光损伤研究[J]. 强激光与粒子束, 2023, 35:071001 doi: 10.11884/HPLPB202335.220417

    Zhao Yuanan, Lian Yafei, Li Ting, et al. Laser damage of KDP crystals and their analogues[J]. High Power Laser and Particle Beams, 2023, 35: 071001 doi: 10.11884/HPLPB202335.220417
    [76] Liu Zhichao, Zheng Yi, Zhang Qinghua, et al. Adaptive laser conditioning of reflective thin-film based on photo thermal lens probe[J]. Review of Scientific Instruments, 2017, 88: 124901. doi: 10.1063/1.5017187
    [77] Zhang Jian, Geng Feng, Liu Zhichao, et al. Elimination of X-rays irradiated defects in fused silica by laser conditioning[J]. Optics Communications, 2021, 483: 126639. doi: 10.1016/j.optcom.2020.126639
    [78] 彭钦军, 申玉, 杨峰, 等. 一种提高光学薄膜损伤阈值的大面激光薄膜制备装置: CN109972095B[P]. 2021-02-26.

    Peng Qinjun, Shen Yu, Yang Feng, et al. A large area laser thin film preparation device for improving the damage threshold of optical thin films:CN109972095B[P]. 2021-02-26
  • 加载中
图(7)
计量
  • 文章访问数:  473
  • HTML全文浏览量:  153
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-30
  • 修回日期:  2023-06-15
  • 录用日期:  2023-06-08
  • 网络出版日期:  2023-06-26
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回