留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

衍射极限储存环束流注入物理方案的设计及模拟

王佩宁 杨鹏辉 刘刚文 白正贺 李为民

王佩宁, 杨鹏辉, 刘刚文, 等. 衍射极限储存环束流注入物理方案的设计及模拟[J]. 强激光与粒子束, 2023, 35: 124006. doi: 10.11884/HPLPB202335.230070
引用本文: 王佩宁, 杨鹏辉, 刘刚文, 等. 衍射极限储存环束流注入物理方案的设计及模拟[J]. 强激光与粒子束, 2023, 35: 124006. doi: 10.11884/HPLPB202335.230070
Wang Peining, Yang Penghui, Liu Gangwen, et al. Design and simulation of beam injection scheme for diffraction limited storage ring[J]. High Power Laser and Particle Beams, 2023, 35: 124006. doi: 10.11884/HPLPB202335.230070
Citation: Wang Peining, Yang Penghui, Liu Gangwen, et al. Design and simulation of beam injection scheme for diffraction limited storage ring[J]. High Power Laser and Particle Beams, 2023, 35: 124006. doi: 10.11884/HPLPB202335.230070

衍射极限储存环束流注入物理方案的设计及模拟

doi: 10.11884/HPLPB202335.230070
基金项目: 国家自然科学基金青年基金项目(12005226)
详细信息
    作者简介:

    王佩宁,wpn13@mail.ustc.edu.cn

    通讯作者:

    刘刚文,hbwxlgw@ustc.edu.cn

  • 中图分类号: TL501

Design and simulation of beam injection scheme for diffraction limited storage ring

  • 摘要: 衍射极限储存环(DLSR)作为第四代同步辐射光源,正得到世界各国的大力发展和建设。如何在尽量减小对存储束流扰动情况下,高效率地将束流注入到储存环中,是衍射极限储存环设计与运行中的重要课题之一。传统的局部凸轨注入法有着很长的历史,应用广泛且技术成熟,但是传统凸轨注入法会对存储束流造成扰动,且衍射极限储存环的动力学孔径较小,这给传统凸轨注入法的应用带来了困难。为了解决这些问题,改进了一些传统的离轴注入法,提出并发展了一些在轴的注入方法。合肥先进光源(HALF)是规划建设中的衍射极限储存环光源,基于HALF储存环的物理设计方案,设计并应用了几种离轴或在轴的注入方案,通过粒子跟踪和模拟的方法验证了它们的可行性并研究了注入效率等物理问题,并对模拟结果进行了讨论和总结。
  • 图  1  HALF储存环一个周期的lattice及线性光学参数

    Figure  1.  Magnet layout and linear optical parameters of one period HALF lattice

    图  2  HALF储存环动力学孔径

    Figure  2.  Dynamic aperture of the HALF storage ring

    图  3  采用反向切割磁铁的凸轨注入法的元件布局示意图

    Figure  3.  Schematic layout of injection devices for the bump injection scheme with anti-septum (K2)

    图  4  反向切割磁铁注入方案元件布局

    Figure  4.  Element layout of anti-septum injection scheme

    图  5  注入束流前六圈位置

    Figure  5.  Position of the first six turns of injection beam

    图  6  反向切割磁铁方案注入效率

    Figure  6.  Injection efficiency of anti-septum injection scheme

    图  7  反向切割磁铁注入对存储束流造成影响

    Figure  7.  Influence of anti-septum injection on the stored beam

    图  8  脉冲多极铁注入法的元件布局示意图

    Figure  8.  Schematic layout of injection devices for the multipole kicker injection scheme

    图  9  非线性磁铁场形图

    Figure  9.  Field distribution of nonlinear kicker

    图  10  注入方案及注入束流首圈运动轨迹

    Figure  10.  First turn trajectory of the injection particle and specific parameters of the injection scheme

    图  11  脉冲多极铁注入后束流累积过程

    Figure  11.  Accumulation process after pulsed multipole injection

    图  12  有误差存在下的脉冲多极铁注入效率

    Figure  12.  Injection efficiency of pulsed multipole injection with error

    图  13  脉冲多极铁注入对存储束流的影响

    Figure  13.  Influence of pulsed multipole injection on the stored beam

    图  14  纵向注入法的元件布局示意图

    Figure  14.  Schematic layout of injection devices for the longitudinal injection scheme

    图  15  纵向注入中纵向相空间上下边界

    Figure  15.  Upper and lower boundaries of longitudinal phase space in longitudinal injection

    图  16  δ0δs随高频腔压的变化

    Figure  16.  δ0 and δs change with high frequency cavity voltage

    图  17  纵向注入束流累积过程

    Figure  17.  Accumulation process of injection beam in longitudinal injection

    表  1  HALF储存环主要设计参数

    Table  1.   Main parameters of the HALF storage ring

    circumference/
    m
    beam
    energy/
    GeV
    focusing
    type
    natural
    emittance/
    (pm·rad)
    transverse
    tunes
    (H/V)
    natural
    chromaticities
    (H/V)
    momentum
    compaction
    factor
    energy
    loss per
    turn/keV
    harmonic
    number
    RF
    frequency/
    MHz
    RF
    voltage/
    kV
    damping
    time
    (H/V/L)/ms
    natural
    energy
    spread
    479.86 2.2 20×6BA 86.3 48.15/17.15 −77/−57 9.0×10−5 186.7 800 500 1000 27.2/37.7/23.4 0.62×10−3
    下载: 导出CSV

    表  2  脉冲多极铁注入方案主要参数

    Table  2.   Main parameters of pulsed multipole injection scheme

    horizontal position
    of the injection beam
    at septum/mm
    incidence angle of
    the injection beam
    at septum/mrad
    position
    of
    septum
    position of
    nonlinear
    kicker
    length of
    nonlinear
    kicker/cm
    kick angle of
    nonlinear
    kicker/mrad
    12−3.1midpoint of long
    straight section
    downstream of long
    straight section
    403
    下载: 导出CSV

    表  3  纵向注入方案主要参数

    Table  3.   Main parameters of longitudinal injection scheme

    injection beam time offset/ns injection beam energy offset/% RF frequency/MHz RF voltage/kV harmonic number bunch spacing/ns
    −5 4.34 100 350 160 10
    下载: 导出CSV
  • [1] Shang L, Shang F L, Lu Y M, et al. The new injection system of the HLS II[C]//Proceedings of the IPAC 2013. 2013: 687-689.
    [2] Ohkuma H. Top-up operation in light sources[C]//Proceedings of the EPAC08. 2008: 36.
    [3] Bei M, Borland M, Cai Yongda, et al. The potential of an ultimate storage ring for future light sources[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 622(3): 518-535.
    [4] Hettel R. DLSR design and plans: an international overview[J]. Journal of Synchrotron Radiation, 2014, 21(Pt 5): 843-855.
    [5] 焦毅, 白正贺. 第四代同步辐射光源物理设计与优化[J]. 强激光与粒子束, 2022, 34:104004 doi: 10.11884/HPLPB202234.220136

    Jiao Yi, Bai Zhenghe. Physics design and optimization of the fourth-generation synchrotron light sources[J]. High Power Laser and Particle Beams, 2022, 34: 104004 doi: 10.11884/HPLPB202234.220136
    [6] Gough C, Aiba M. Top-up injection with “anti-septum”[C]//Proceedings of the IPAC2017. 2017: 774-776.
    [7] Harada K, Kobayashi Y, Miyajima T, et al. New injection scheme using a pulsed quadrupole magnet in electron storage rings[J]. Physical Review Special Topics-Accelerators and Beams, 2007, 10: 123501. doi: 10.1103/PhysRevSTAB.10.123501
    [8] Takaki H, Nakamura N, Kobayashi Y, et al. Beam injection with a pulsed sextupole magnet in an electron storage ring[J]. Physical Review Special Topics−Accelerators and Beams, 2010, 13: 020705.
    [9] Takai R, Obina T, Ueda A, et al. Beam profile measurement during top-up injection with a pulsed sextupole magnet[C]//Proceedings of the DIPAC2011. 2011: 305-307.
    [10] Henderson S. Status of the APS upgrade project[C]//Proceedings of the 6th International Particle Accelerator Conference. 2015: 1791-1793.
    [11] Steier C, Anders A, Byrd J, et al. ALS-U: a Soft X-ray diffraction limited light source[C]//Proceedings of the 2nd North American Particle Accelerator Conference. 2016.
    [12] Chen Jinhui, Shi Hengxu, Wang L, et al. Strip-line kicker and fast pulser R&D for the HEPS on-axis injection system[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 920: 1-6.
    [13] Aiba M, Böge M, Marcellini F, et al. Longitudinal injection scheme using short pulse kicker for small aperture electron storage rings[J]. Physical Review Special Topics−Accelerators and Beams, 2015, 18: 020701.
    [14] Hernandez A S, Aiba M. Investigation of the injection scheme for SLS 2.0[C]//Proceedings of the 6th International Particle Accelerator Conference. 2015: 1720-1723.
    [15] Terebilo A. Accelerator toolbox for MATLAB[R]. SLAC-PUB-8732, 2001.
    [16] 白正贺, 刘刚文, 何天龙, 等. 合肥先进光源储存环初步物理设计[J]. 强激光与粒子束, 2022, 34:104003 doi: 10.11884/HPLPB202234.220137

    Bai Zhenghe, Liu Gangwen, He Tianlong, et al. Preliminary physics design of the Hefei Advanced Light Facility storage ring[J]. High Power Laser and Particle Beams, 2022, 34: 104003 doi: 10.11884/HPLPB202234.220137
    [17] MAX IV detailed design report[EB/OL]. https://www.maxiv.lu.se/accelerators-beamlines/accelerators/accelerator-documentation/max-iv-ddr/.
    [18] Leemann S C. Pulsed sextupole injection for Sweden’s new light source MAX IV[J]. Physical Review Special Topics-Accelerators and Beams, 2012, 15: 050705. doi: 10.1103/PhysRevSTAB.15.050705
    [19] Atkinson T, Dirsat M, Dressler O, et al. Development of a non-linear kicker system to facilitate a new injection scheme for the BESSY II storage ring[C]//Proceedings of the IPAC2011. 2011: 3394-3396.
    [20] Song Wenbin, Shang Lei, Shang Fenglei, et al. A novel kind of nonlinear kicker for the Hefei Advanced Light Facility[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 990: 164986.
    [21] Wang P N, Liu G, Wang L, et al. Acceptance analysis method for the scheme design of multipole kicker injection[C]//Proceedings of the 12th International Particle Accelerator Conference. 2021: 2900-2902.
    [22] Wang L, Chen J H, Shi H, et al. A novel 5-cell strip-line kicker prototype for the HEPS on-axis injection system[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 992: 165040.
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  239
  • HTML全文浏览量:  119
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-01
  • 修回日期:  2023-11-06
  • 录用日期:  2023-11-06
  • 网络出版日期:  2023-11-15
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回