留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

嵌入式微通道散热器实验与数值研究

姜文涛 赵锐 程文龙

姜文涛, 赵锐, 程文龙. 嵌入式微通道散热器实验与数值研究[J]. 强激光与粒子束, 2023, 35: 099003. doi: 10.11884/HPLPB202335.230071
引用本文: 姜文涛, 赵锐, 程文龙. 嵌入式微通道散热器实验与数值研究[J]. 强激光与粒子束, 2023, 35: 099003. doi: 10.11884/HPLPB202335.230071
Jiang Wentao, Zhao Rui, Cheng Wenlong. Experimental and numerical study of embedded microchannel heat sink[J]. High Power Laser and Particle Beams, 2023, 35: 099003. doi: 10.11884/HPLPB202335.230071
Citation: Jiang Wentao, Zhao Rui, Cheng Wenlong. Experimental and numerical study of embedded microchannel heat sink[J]. High Power Laser and Particle Beams, 2023, 35: 099003. doi: 10.11884/HPLPB202335.230071

嵌入式微通道散热器实验与数值研究

doi: 10.11884/HPLPB202335.230071
详细信息
    作者简介:

    姜文涛,wentao8306@163.com

    通讯作者:

    程文龙,wlcheng515@163.com

  • 中图分类号: TK124

Experimental and numerical study of embedded microchannel heat sink

  • 摘要: 针对高热流密度固体激光器的散热问题,借助微机电系统(MEMS)技术,利用微通道/热源协同设计方法,换热器采用连续S型微通道,并利用歧管形成分层分段流动,研制出了一套微型紧凑的嵌入式歧管S型微通道散热器,并开展了实验研究。使用HFE-7100作为冷却工质,在发热面局部最高温度小于100 ℃、平均温升小于45 ℃的情况下,两相时可带走625 W/cm2的热通量,相比传统的歧管矩形微通道散热器提高了12%,但流阻增大了约56%;利用数值模拟方法,通过改变S型的振幅和波长,根据发热面平均温度、换热面平均努塞尔数、压降和综合性能因子来评估S型微通道散热器的结构参数对其散热能力和流动阻力的影响,寻找S型微通道的最优结构设计参数组合。结果表明该散热器的综合性能因子在一个特定的S型形状下存在最佳值。
  • 图  1  流动回路示意图

    Figure  1.  Schematic diagram of flow circuit

    图  2  散热器整体示意图、封装实物图和两种微通道(S型和矩形)的微观结构

    Figure  2.  Schematic diagram of the heat sink, physical diagram of the package and microstructure of the two microchannels (S-shaped and rectangular)

    (a) overall diagram; (b) front of microchannel plate; (c) back of microchannel plate; (d)physical view of the heat sink; (e) microchannel structure

    图  3  发热面蛇形加热器分布情况

    Figure  3.  Distribution of serpentine heaters on the chip surface

    图  4  发热面温度随热流密度的变化

    Figure  4.  Variation of chip surface temperature with heat flow density

    图  5  发热面最大温差随热流密度的变化

    Figure  5.  Variation of maximum temperature difference on the chip surface with heat flow density

    图  6  S型(S)与矩形(R)微通道,热流密度作为发热面平均温度的函数

    Figure  6.  S-shaped (S) and rectangular (R) microchannels with heat flow density as a function of the average temperature of the heat generating surface

    图  7  S型(S)与矩形(R)微通道进出口压降随热流密度的变化

    Figure  7.  Variation of inlet and outlet pressure drop with heat flow density in S-shaped (S) and rectangular (R) microchannels

    图  8  S型微通道散热器物理模型

    Figure  8.  Physical model of the heat sink for S-shaped microchannel

    图  9  网格独立性研究和仿真验证

    Figure  9.  Grid independence research and simulation verification

    图  10  歧管S型与歧管矩形微通道的温度、速度云图和流线图

    Figure  10.  Temperature, velocity nephogram and streamline diagram of manifold S-shaped and straight wall microchannels

    图  11  振幅参数A对微通道传热及流动性能的影响

    Figure  11.  Effect of amplitude parameter A on heat transfer and flow performance of the microchannel

    图  12  频率参数B对微通道传热及流动性能的影响

    Figure  12.  Effect of frequency parameter B on heat transfer and flow performance of the microchannel

    表  1  微通道结构参数

    Table  1.   Microchannel structure parameters

    type of channelschannel length
    lc/mm
    channel width
    wc/μm
    channel depth
    ld/μm
    aspect ratio of
    channel α
    fin width
    wf/μm
    substrate thickness
    lb/μm
    channel number
    n
    rectangular microchannel5171458.513350167
    S-shaped microchannel5161569.814350167
    下载: 导出CSV

    表  2  几何模型结构参数汇总

    Table  2.   Summary of structural parameters of the geometric model

    channel
    length
    lc/mm
    channel
    width
    wc/μm
    fin
    width
    wf/μm
    channel
    depth
    ld/μm
    substrate
    thickness
    lb/μm
    inlet
    width
    lin/μm
    outlet
    width
    lout/μm
    diversion
    opening
    width ldiv/μm
    inlet fluid
    temperature
    Tin/K
    heat
    flux
    q″/(W·cm−2)
    51515150150400400200298300
    下载: 导出CSV

    表  3  HFE-7100和Si的物性参数

    Table  3.   Physical parameters of HFE-7100 and Si

    materialρ/(kg·m−3)cp/(J·kg−1·K−1 )k/(W·m−1·K−1)μ/(Pa·s)
    HFE-71001511.231235.266.46×10−26.7917×10−4
    Si2330712148/
    下载: 导出CSV
  • [1] 潘娜娜, 潘艳秋, 俞路, 等. 微通道冷却器内流动和传热特性的数值模拟[J]. 强激光与粒子束, 2016, 28:021002 doi: 10.11884/HPLPB201628.021002

    Pan Nana, Pan Yanqiu, Yu Lu, et al. Numerical simulation of flow and heat transfer characteristics in microchannel cooler[J]. High Power Laser and Particle Beams, 2016, 28: 021002 doi: 10.11884/HPLPB201628.021002
    [2] 卢鹏, 潘艳秋, 俞路, 等. 固体激光微通道冷却器内流动特性的数值模拟[J]. 强激光与粒子束, 2014, 26:051008 doi: 10.3788/HPLPB20142605.51008

    Lu Peng, Pan Yanqiu, Yu Lu, et al. Numerical simulation of flow characteristic in solid-state laser microchannel cooler[J]. High Power Laser and Particle Beams, 2014, 26: 051008 doi: 10.3788/HPLPB20142605.51008
    [3] Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. doi: 10.1109/EDL.1981.25367
    [4] Borah S, Tamuli B R, Bhanja D. Thermohydraulic performance intensification of wavy, double-layered microchannel heat sink with height tapering[J]. Journal of Thermophysics and Heat Transfer, 2023, 37(1): 119-132. doi: 10.2514/1.T6590
    [5] 高智刚, 郑达文, 尚小龙, 等. 功率模块正弦微通道热沉周向传热特性分析[J]. 工程热物理学报, 2022, 43(5):1267-1275

    Gao Zhigang, Zheng Dawen, Shang Xiaolong, et al. Circumferential heat transfer analysis of sinusoidal microchannel heat sink on power module[J]. Journal of Engineering Thermophysics, 2022, 43(5): 1267-1275
    [6] Li Peisheng, Hong Jian, Zhang Ying, et al. Effect of waveform channel on the cooling performance of hybrid microchannel[J]. Journal of Thermophysics and Heat Transfer, 2022, 36(3): 520-533. doi: 10.2514/1.T6399
    [7] Al-Hasani H M, Freegah B. Influence of secondary flow angle and pin fin on hydro-thermal evaluation of double outlet serpentine mini-channel heat sink[J]. Results in Engineering, 2022, 16: 100670. doi: 10.1016/j.rineng.2022.100670
    [8] Zeng Chen, Song Yinxi, Zhou Xiang, et al. Experimental study on heat transfer and pressure drop characteristics in a microchannel heat exchanger assembly with s-shaped fins[J]. Applied Thermal Engineering, 2022, 210: 118406. doi: 10.1016/j.applthermaleng.2022.118406
    [9] Jiang Qingfeng, Pan Chongyao, Guo Ting, et al. Thermal hydraulic characteristics of trans-critical natural gas flowing through staggered S-shaped fin microchannel[J]. Cryogenics, 2022, 124: 103491. doi: 10.1016/j.cryogenics.2022.103491
    [10] Harpole G M, Eninger J E. Micro-channel heat exchanger optimization[C]//1991 Proceedings, Seventh IEEE Semiconductor Thermal Measurement and Management Symposium. 1991: 59-63.
    [11] 陈超伟, 王鑫煜, 辛公明. 多孔鳍歧管微通道流动传热特性研究[J]. 制冷学报, 2022, 43(3):62-70

    Chen Chaowei, Wang Xinyu, Xin Gongming. Flow and heat transfer characteristics in manifold microchannel with porous fins[J]. Journal of Refrigeration, 2022, 43(3): 62-70
    [12] Drummond K P, Back D, Sinanis M D, et al. A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics[J]. International Journal of Heat and Mass Transfer, 2018, 117: 319-330. doi: 10.1016/j.ijheatmasstransfer.2017.10.015
    [13] Drummond K P, Back D, Sinanis M D, et al. Characterization of hierarchical manifold microchannel heat sink arrays under simultaneous background and hotspot heating conditions[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1289-1301. doi: 10.1016/j.ijheatmasstransfer.2018.05.127
    [14] Drummond K P, Weibel J A, Garimella S V. Two-phase flow morphology and local wall temperatures in high-aspect-ratio manifold microchannels[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119551. doi: 10.1016/j.ijheatmasstransfer.2020.119551
    [15] Pan Yuhui, Zhao Rui, Nian Yongle, et al. Study on the flow and heat transfer characteristics of pin-fin manifold microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122052. doi: 10.1016/j.ijheatmasstransfer.2021.122052
    [16] 谢文远, 吕晓辰, 李龙, 等. 分级歧管微通道阵列散热器流动与散热特性研究[J]. 航天器工程, 2020, 29(4):99-107

    Xie Wenyuan, Lu Xiaochen, Li Long, et al. Flow and thermal characteristics research on hierarchical manifold microchannel heat sink array[J]. Spacecraft Engineering, 2020, 29(4): 99-107
    [17] 毕胜山, 崔军卫, 马纶建, 等. HFE7100和HFE7500的热物理性质[J]. 化工学报, 2016, 67(5):1680-1686

    Bi Shengshan, Cui Junwei, Ma Lunjian, et al. Thermophysical properties of HFE7100 and HFE7500[J]. CIESC Journal, 2016, 67(5): 1680-1686
    [18] Rausch M H, Kretschmer L, Will S, et al. Density, surface tension, and kinematic viscosity of hydrofluoroethers HFE-7000, HFE-7100, HFE-7200, HFE-7300, and HFE-7500[J]. Journal of Chemical & Engineering Data, 2015, 60(12): 3759-3765.
    [19] Agarwal S K, Raja Rao M. Heat transfer augmentation for the flow of a viscous liquid in circular tubes using twisted tape inserts[J]. International Journal of Heat and Mass Transfer, 1996, 39(17): 3547-3557. doi: 10.1016/0017-9310(96)00039-7
    [20] Patankar S V, Spalding D B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows[J]. International Journal of Heat and Mass Transfer, 1972, 15(10): 1787-1806. doi: 10.1016/0017-9310(72)90054-3
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  569
  • HTML全文浏览量:  239
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-01
  • 修回日期:  2023-06-02
  • 录用日期:  2023-05-04
  • 网络出版日期:  2023-08-09
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回