留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于束流相空间拍频产生锁模自由电子激光的物理机制研究

张波 齐争 冯超 赵振堂

张波, 齐争, 冯超, 等. 基于束流相空间拍频产生锁模自由电子激光的物理机制研究[J]. 强激光与粒子束, 2023, 35: 094001. doi: 10.11884/HPLPB202335.230090
引用本文: 张波, 齐争, 冯超, 等. 基于束流相空间拍频产生锁模自由电子激光的物理机制研究[J]. 强激光与粒子束, 2023, 35: 094001. doi: 10.11884/HPLPB202335.230090
Zhang Bo, Qi Zheng, Feng Chao, et al. Research on physical mechanism of mode-locked free-electron laser based on electron beam phase space beating[J]. High Power Laser and Particle Beams, 2023, 35: 094001. doi: 10.11884/HPLPB202335.230090
Citation: Zhang Bo, Qi Zheng, Feng Chao, et al. Research on physical mechanism of mode-locked free-electron laser based on electron beam phase space beating[J]. High Power Laser and Particle Beams, 2023, 35: 094001. doi: 10.11884/HPLPB202335.230090

基于束流相空间拍频产生锁模自由电子激光的物理机制研究

doi: 10.11884/HPLPB202335.230090
基金项目: 国家自然科学基金项目(12122514,11975300);上海市青年科技启明星项目(20QA1410100)
详细信息
    作者简介:

    张 波:zhangbo2@sinap.ac.cn

  • 中图分类号: TN248.6

Research on physical mechanism of mode-locked free-electron laser based on electron beam phase space beating

  • 摘要: 提出基于束流相空间拍频产生锁模多色自由电子激光的方案,利用带有能量啁啾的电子束流和上海软X射线自由电子激光装置(SXFEL)上的两个调制段-色散段结构,在束流中通过拍频形成多个流强脉冲串,并在此基础上进行高次谐波辐射,产生锁模多色自由电子激光辐射脉冲。模拟结果表明,利用264 nm的种子激光,可在束流中形成18次谐波的群聚分量,并能最终产生中心波长约14.58 nm 的锁模多色FEL辐射。
  • 图  1  方案基本结构与束流纵向相空间变化示意图

    Figure  1.  Schematic layout and the electron beam phase space evolution of our proposed method

    图  2  束流纵向相空间分布

    Figure  2.  Electron beam longitudinal phase space distribution

    图  3  波荡器入口处束流中的18次谐波群聚因子

    Figure  3.  The 18th harmonic bunching factor at the entrance of the undulator section

    图  4  锁模 FEL 功率和光谱

    Figure  4.  Mode-locked FEL radiation power and spectra

    表  1  主要参数

    Table  1.   Main Parameters

    beam
    energy/GeV
    energy
    spread
    peak
    current/A
    emittance
    (RMS)/(μm·rad)
    wavelength/nmpeak power
    of seed1/MW
    peak power
    of seed2/MW
    ${R}_{56,1}$/µm${R}_{56,2}$/µm
    10.4 × 10−515001.02645210016030
    下载: 导出CSV
  • [1] Emma P, Akre R, Arthur J, et al. First lasing and operation of an ångstrom-wavelength free-electron laser[J]. Nature Photonics, 2010, 4(9): 641-647. doi: 10.1038/nphoton.2010.176
    [2] Allaria E, Appio R, Badano L, et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet[J]. Nature Photonics, 2012, 6(10): 699-704. doi: 10.1038/nphoton.2012.233
    [3] Huang Nanshun, Deng Haixiao, Liu Bo, et al. Features and futures of X-ray free-electron lasers[J]. The Innovation, 2021, 2: 100097.
    [4] Chapman H N. X-ray free-electron lasers for the structure and dynamics of macromolecules[J]. Annual Review of Biochemistry, 2019, 88: 35-58. doi: 10.1146/annurev-biochem-013118-110744
    [5] Bostedt C, Boutet S, Fritz D M, et al. Linac coherent light source: the first five years[J]. Reviews of Modern Physics, 2016, 88: 015007. doi: 10.1103/RevModPhys.88.015007
    [6] Thompson N R, McNeil B W J. Mode locking in a free-electron laser amplifier[J]. Physical Review Letters, 2008, 100: 203901. doi: 10.1103/PhysRevLett.100.203901
    [7] Kur E, Dunning D J, McNeil B W J, et al. A wide bandwidth free-electron laser with mode locking using current modulation[J]. New Journal of Physics, 2011, 13: 063012. doi: 10.1088/1367-2630/13/6/063012
    [8] Xiang Dao, Ding Yuantao, Raubenheimer T, et al. Mode-locked multichromatic X rays in a seeded free-electron laser for single-shot X-ray spectroscopy[J]. Physical Review Special Topics-Accelerators and Beams, 2012, 15: 050707. doi: 10.1103/PhysRevSTAB.15.050707
    [9] Feng Chao, Chen Jianhui, Zhao Zhentang. Generating stable attosecond X-ray pulse trains with a mode-locked seeded free-electron laser[J]. Physical Review Special Topics-Accelerators and Beams, 2012, 15: 080703. doi: 10.1103/PhysRevSTAB.15.080703
    [10] Henderson J R, McNeil B W J. Echo enabled harmonic generation free electron laser in a mode-locked configuration[J]. Europhysics Letters, 2012, 100: 64001. doi: 10.1209/0295-5075/100/64001
    [11] Dunning D J, McNeil B W J, Thompson N R. Few-cycle pulse generation in an X-ray free-electron laser[J]. Physical Review Letters, 2013, 110: 104801. doi: 10.1103/PhysRevLett.110.104801
    [12] Maroju P K, Grazioli C, Di Fraia M, et al. Attosecond pulse shaping using a seeded free-electron laser[J]. Nature, 2020, 578(7795): 386-391. doi: 10.1038/s41586-020-2005-6
    [13] Maroju P K, Grazioli C, Di Fraia M, et al. Complex attosecond waveform synthesis at FEL FERMI[J]. Applied Sciences, 2021, 11: 9791. doi: 10.3390/app11219791
    [14] Reiche S. GENESIS 1.3: a fully 3D time-dependent FEL simulation code[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 429(1/3): 243-248.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  364
  • HTML全文浏览量:  124
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-18
  • 修回日期:  2023-07-14
  • 录用日期:  2023-07-16
  • 网络出版日期:  2023-07-22
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回