留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

严重事故下堆舱空间氢气分布特性数值模拟

许志勇 刘家磊 陈玉清 王海峰

许志勇, 刘家磊, 陈玉清, 等. 严重事故下堆舱空间氢气分布特性数值模拟[J]. 强激光与粒子束, 2023, 35: 106001. doi: 10.11884/HPLPB202335.230093
引用本文: 许志勇, 刘家磊, 陈玉清, 等. 严重事故下堆舱空间氢气分布特性数值模拟[J]. 强激光与粒子束, 2023, 35: 106001. doi: 10.11884/HPLPB202335.230093
Xu Zhiyong, Liu Jialei, Chen Yuqing, et al. Numerical simulation of hydrogen distribution characteristics in reactor space under severe accident[J]. High Power Laser and Particle Beams, 2023, 35: 106001. doi: 10.11884/HPLPB202335.230093
Citation: Xu Zhiyong, Liu Jialei, Chen Yuqing, et al. Numerical simulation of hydrogen distribution characteristics in reactor space under severe accident[J]. High Power Laser and Particle Beams, 2023, 35: 106001. doi: 10.11884/HPLPB202335.230093

严重事故下堆舱空间氢气分布特性数值模拟

doi: 10.11884/HPLPB202335.230093
详细信息
    作者简介:

    许志勇,xuzhiyong2020@163.com

    通讯作者:

    陈玉清,chenyuqing301@163.com

  • 中图分类号: TL364

Numerical simulation of hydrogen distribution characteristics in reactor space under severe accident

  • 摘要: 利用计算流体力学软件CFX分析了零方程模型和k-ε模型对氢气分布的影响,并对船用堆在典型失水诱发的严重事故下堆舱空间内的氢气分布特性进行了数值模拟。结果表明:在氢气释放阶段内,用k-ε模型模拟堆舱空间内的氢气分布更为合理;严重事故下的气体喷放期间,堆舱空间内各点处的压力变化基本一致,空间内的温度不会持续升高,氢气在堆舱空间内建立了比较明显的浓度梯度,堆舱顶部区域和破口附近区域氢气浓度都较高;氢气喷放结束后,堆舱空间内的平均水蒸气浓度不足以维持蒸汽惰性环境,堆舱空间内存在氢气燃烧的可能。研究结果为开展船用堆的氢气风险研究提供了基础。
  • 图  1  气体浓度测点示意图

    Figure  1.  Schematic view of gas concentration measuring points

    图  2  五种网格方案计算结果

    Figure  2.  Computational results of five mesh schemes

    图  3  38 mm破口尺寸的归一化气体产生量

    Figure  3.  Normalized gas production at a break size of 38 mm

    图  4  不同湍流模型计算结果(上:k-ε模型;下:零方程模型)

    Figure  4.  Simulation results of different turbulence models (top: k-ε model; bottom: zero equation model)

    图  5  堆舱空间内压力变化

    Figure  5.  Pressure change at different points in reactor space

    图  6  堆舱空间内温度变化

    Figure  6.  Temperature change at different points in reactor space

    图  7  堆舱空间内氢气浓度变化

    Figure  7.  Variation of hydrogen concentration at different points in reactor space

    图  8  不同时刻氢气分布云图

    Figure  8.  Hydrogen distribution nephogram at different time

    图  9  不同时刻气体的流线分布图

    Figure  9.  Gas streamline distribution at different time

    表  1  五种网格划分方案参数

    Table  1.   Parameters of five different mesh schemes

    cellsnodesmaximum skewnessaverage skewnessstandard deviation
    1240059 2497908 0.8588 0.2445 0.1686
    1688713 3367411 0.8954 0.2386 0.1684
    2137368 4236914 0.8888 0.2333 0.1705
    4397920 8544655 0.8577 0.2262 0.1695
    6658472 12852396 0.8820 0.2170 0.1662
    下载: 导出CSV

    表  2  初始条件与边界条件参数

    Table  2.   Parameters for initial conditions and boundary conditions

    parametervalue
    steam injection mass flow rate/(kg·s−1)1.56932
    steam injection time/s0~2100
    steam injection temperature/K480
    hydrogen injection mass flow rate/(kg·s−1)0.01407
    hydrogen injection time/s2100~3600
    hydrogen injection temperature/K420
    initial gas composition in reactor spaceair
    initial gas temperature in reactor compartment/K323
    initial pressure in reactor space/atm1
    injection diameter/mm38
    injection positioncold end non-isolated section
    directionvertically upward
    下载: 导出CSV
  • [1] Bentaib A, Meynet N, Bleyer A. Overview on hydrogen risk research and development activities: methodology and open issues[J]. Nuclear Engineering and Technology, 2015, 47(1): 26-32. doi: 10.1016/j.net.2014.12.001
    [2] Tong Lili, Zou Jie, Cao Xuewu. Analysis on hydrogen risk mitigation in severe accidents for pressurized heavy water reactor[J]. Progress in Nuclear Energy, 2015, 80: 128-135. doi: 10.1016/j.pnucene.2014.12.011
    [3] Yanez J, Kuznetsov M, Souto-Iglesias A. An analysis of the hydrogen explosion in the Fukushima-Daiichi accident[J]. International Journal of Hydrogen Energy, 2015, 40(25): 8261-8280. doi: 10.1016/j.ijhydene.2015.03.154
    [4] 彭程, 邓坚. 安全壳大空间内氢气分层行为的模型研究[J]. 核动力工程, 2021, 42(3):155-159 doi: 10.13832/j.jnpe.2021.03.0155

    Peng Cheng, Deng Jian. Model study on hydrogen stratification behavior within a containment[J]. Nuclear Power Engineering, 2021, 42(3): 155-159 doi: 10.13832/j.jnpe.2021.03.0155
    [5] Malet J, Porcheron E, Vendel J. OECD international standard problem ISP-47 on containment thermal-hydraulics-conclusions of the TOSQAN part[J]. Nuclear Engineering and Design, 2010, 240(10): 3209-3220. doi: 10.1016/j.nucengdes.2010.05.061
    [6] Filippov A S, Grigoryev S Y, Tarasov O V. On the possible role of thermal radiation in containment thermal-hydraulics experiments by the example of CFD analysis of TOSQAN T114 air-He test[J]. Nuclear Engineering and Design, 2016, 310: 175-186. doi: 10.1016/j.nucengdes.2016.10.003
    [7] Prabhakar A, Agrawal N, Raghavan V, et al. Experimental investigations on the evolution of stratified layer of helium in the unventilated vertical cylindrical enclosure of AIHMS facility under wall temperature induced natural convection[J]. Nuclear Engineering and Design, 2017, 323: 367-375. doi: 10.1016/j.nucengdes.2017.03.019
    [8] Malet J, Laissac R. CFD calculations of stratification build-up tests of light gas in a closed vessel under controlled boundary conditions[J]. Computers & Fluids, 2015, 107: 224-241.
    [9] Fernández-Cosials M K, Jimenez G, Lopez-Alonso E. Analysis of a gas stratification break-up by a vertical jet using the GOTHIC code[J]. Nuclear Engineering and Design, 2016, 297: 123-135. doi: 10.1016/j.nucengdes.2015.11.035
    [10] Kelm S, Lehmkuhl J, Jahn W, et al. A comparative assessment of different experiments on buoyancy driven mixing processes by means of CFD[J]. Annals of Nuclear Energy, 2016, 93: 50-57. doi: 10.1016/j.anucene.2015.12.032
    [11] 刘汉臣, 武心壮, 向文娟, 等. 小尺度空间内氢气流动分布特性数值研究[J]. 核动力工程, 2022, 43(2):204-211 doi: 10.13832/j.jnpe.2022.02.0204

    Liu Hanchen, Wu Xinzhuang, Xiang Wenjuan, et al. Numerical study on hydrogen flow distribution characteristics in small-scale space[J]. Nuclear Power Engineering, 2022, 43(2): 204-211 doi: 10.13832/j.jnpe.2022.02.0204
    [12] 许幼幼, 彭欢欢, 张明, 等. 严重事故下小型安全壳内氢气风险分析[J]. 核动力工程, 2020, 41(s2):64-68 doi: 10.13832/j.jnpe.2020.S2.0064

    Xu Youyou, Peng Huanhuan, Zhang Ming, et al. Analysis of hydrogen risk in containment under severe accident[J]. Nuclear Power Engineering, 2020, 41(s2): 64-68 doi: 10.13832/j.jnpe.2020.S2.0064
    [13] 王迪, 曹学武. 不同湍流模型对氢气分布影响的数值研究[J]. 原子能科学技术, 2016, 50(9):1622-1628 doi: 10.7538/yzk.2016.50.09.1622

    Wang Di, Cao Xuewu. Numerical study on effect of different turbulence models on hydrogen distribution[J]. Atomic Energy Science and Technology, 2016, 50(9): 1622-1628 doi: 10.7538/yzk.2016.50.09.1622
    [14] 侯丽强, 佟立丽, 曹学武, 等. 实验装置氢气混合的数值研究[J]. 核动力工程, 2015, 36(s2):146-150 doi: 10.13832/j.jnpe.2015.S2.0146

    Hou Liqiang, Tong Lili, Cao Xuewu, et al. Numerical research on hydrogen mixing in an experimental device[J]. Nuclear Power Engineering, 2015, 36(s2): 146-150 doi: 10.13832/j.jnpe.2015.S2.0146
    [15] Peng Cheng, Tong Lili, Cao Xuewu. Numerical analysis on hydrogen stratification and post-inerting of hydrogen risk[J]. Annals of Nuclear Energy, 2016, 94: 451-460. doi: 10.1016/j.anucene.2016.04.029
    [16] Wilcox D C. Turbulence modeling for CFD[M]. 2nd ed. La Canada: DCW Industries, 1998.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  188
  • HTML全文浏览量:  74
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-19
  • 修回日期:  2023-08-15
  • 录用日期:  2023-08-19
  • 网络出版日期:  2023-10-08
  • 刊出日期:  2023-10-08

目录

    /

    返回文章
    返回