留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抗拉可压型压电陶瓷性能测试及疲劳试验

李国会 李国荣 徐宏来 张秋实 杜应磊 时雪 向振佼 吴晶

李国会, 李国荣, 徐宏来, 等. 抗拉可压型压电陶瓷性能测试及疲劳试验[J]. 强激光与粒子束, 2023, 35: 101007. doi: 10.11884/HPLPB202335.230099
引用本文: 李国会, 李国荣, 徐宏来, 等. 抗拉可压型压电陶瓷性能测试及疲劳试验[J]. 强激光与粒子束, 2023, 35: 101007. doi: 10.11884/HPLPB202335.230099
Li Guohui, Li Guorong, Xu Honglai, et al. Performance test and fatigue test of tensile/compressible piezoelectric ceramics[J]. High Power Laser and Particle Beams, 2023, 35: 101007. doi: 10.11884/HPLPB202335.230099
Citation: Li Guohui, Li Guorong, Xu Honglai, et al. Performance test and fatigue test of tensile/compressible piezoelectric ceramics[J]. High Power Laser and Particle Beams, 2023, 35: 101007. doi: 10.11884/HPLPB202335.230099

抗拉可压型压电陶瓷性能测试及疲劳试验

doi: 10.11884/HPLPB202335.230099
详细信息
    作者简介:

    李国会,hitliguohui@163.com

  • 中图分类号: TN249

Performance test and fatigue test of tensile/compressible piezoelectric ceramics

  • 摘要: 压电陶瓷是自适应光学系统中的核心器件变形镜的主要作动元件,其性能的好坏直接影响变形镜甚至自适应光学系统校正能力。开展了加载电压为±350 V、外形尺寸为5 mm×5 mm×38 mm的抗拉可压型压电陶瓷的性能测试,包括位移、迟滞、电容、阻抗和热膨胀系数等,对压电陶瓷的抗拉能力进行了考核,获得三个样品抗拉能力均大于250 N。采用疲劳测试仪对同批次生产的压电陶瓷进行疲劳试验,在此过程中获得了压电陶瓷的压电效应并对试验数据进行了分析,最后对5#样品进行了1 000万次疲劳试验(±150 N@5 Hz正弦载荷),试验后压电陶瓷的位移减小约5%,其他指标变化较小。通过抗拉能力测试和疲劳试验,初步考核了该型压电陶瓷的抗拉压特性和疲劳特性以及压电陶瓷的使用寿命,为变形镜的研制提供一定的数据支撑。
  • 图  1  压电陶瓷测试系统和测试曲线

    Figure  1.  Piezoelectric ceramic displacement test system and the test curve

    图  2  压电陶瓷电容和阻抗曲线

    Figure  2.  Capacitance and impedance curve of piezoelectric ceramics

    图  3  热膨胀系数测试曲线

    Figure  3.  Thermal expansion coefficient test curve

    图  4  拉力试验及测试曲线

    Figure  4.  Tensile test and test curves

    图  5  压电陶瓷疲劳试验结构件

    Figure  5.  Fatigue test structure of the piezoelectric ceramic

    图  6  试验件装夹方式

    Figure  6.  Clamping mode of test pieces

    图  7  ±150 N@10 Hz正弦载荷曲线及压电陶瓷形变曲线

    Figure  7.  ±150 N@10 Hz sinusoidal load curve and deformation curve of piezoelectric ceramics

    图  8  ±150 N@10 Hz正弦载荷下压电陶瓷的输出电压曲线(正压电效应曲线)

    Figure  8.  ±150 N@10 Hz output voltage curve of piezoelectric ceramics under sinusoidal load (positive piezoelectric effect curve)

    图  9  正弦载荷曲线及压电陶瓷最大/最小形变量曲线

    Figure  9.  Sinusoidal load curve and maximum/minimum deformation curve of piezoelectric ceramics

    图  10  压电陶瓷形变量曲线偏移及清零曲线

    Figure  10.  Deviation and zero clearing curve of piezoelectric ceramics

    图  11  1000万次疲劳试验过程中压电陶瓷位移形变量曲线

    Figure  11.  Displacement and deformation curve of piezoelectric ceramics during 10 million fatigue tests

    表  1  拉力试验测试数据汇总表

    Table  1.   Tensile test summary table

    No.maximum tensile stress/MPamaximum pulling force/N
    112.3289
    211.7276
    310.7251
    下载: 导出CSV
  • [1] 陶帅, 白鸿柏, 何建设, 等. 压电作动器位移输出特性分析[J]. 压电与声光, 2010, 32(5):807-810

    Tao Shuai, Bai Hongbai, He Jianshe, et al. Analysis of the output displacement characteristics of piezoelectric actuator[J]. Piezoelectrics & Acoustooptics, 2010, 32(5): 807-810
    [2] 荣伟彬, 曲东升, 孙立宁, 等. 压电陶瓷微位移器件迟滞模型的研究[J]. 压电与声光, 2003, 25(1):22-25,35

    Rong Weibin, Qu Dongsheng, Sun Lining, et al. Research on hysteresis model of piezoelectric micropositioning actuator[J]. Piezoelectrics & Acoustooptics, 2003, 25(1): 22-25,35
    [3] 曲东升, 孙立宁, 丁庆勇. 压电陶瓷驱动器的建模分析与自适应逆控制[J]. 机器人, 2001, 23(7):688-690,694

    Qu Dongsheng, Sun Lining, Ding Qingyong. Model analysing and adaptive inverse control of piezoelectric actuator[J]. Robot, 2001, 23(7): 688-690,694
    [4] 李国会, 杨媛, 何忠武, 等. 四束激光光轴高精度稳定控制技术[J]. 强激光与粒子束, 2014, 26:031009 doi: 10.3788/HPLPB20142603.31009

    Li Guohui, Yang Yuan, He Zhongwu, et al. High accuracy optical axis stable control in beam system of four lasers[J]. High Power Laser and Particle Beams, 2014, 26: 031009 doi: 10.3788/HPLPB20142603.31009
    [5] 贾巍, 范承玉. 应用于快速倾斜镜的压电陶瓷驱动电源[J]. 量子电子学报, 2015, 32(2):235-240

    Jia Wei, Fan Chengyu. A PZT driving power of fast steering mirror[J]. Chinese Journal of Quantum Electronics, 2015, 32(2): 235-240
    [6] 林旭东, 刘欣悦, 王建立, 等. 基于压电陶瓷促动器的连续镜面变形镜研制进展[J]. 激光与光电子学进展, 2014, 51:090003

    Lin Xudong, Liu Xinyue, Wang Jianli, et al. Progress of the continuous surface deformable mirror based on piezo-ceramic actuator[J]. Laser & Optoelectronics Progress, 2014, 51: 090003
    [7] 李国会, 徐宏来, 吴晶, 等. 非稳腔薄片激光器腔内像差组合式主动校正技术[J]. 中国激光, 2020, 47:1001004 doi: 10.3788/CJL202047.1001004

    Li Guohui, Xu Honglai, Wu Jing, et al. Active correction of intracavity aberration combination in unstable resonator thin-disk laser[J]. Chinese Journal of Lasers, 2020, 47: 1001004 doi: 10.3788/CJL202047.1001004
    [8] Tyson R. Principles of adaptive optics[M]. 3rd ed. Boca Raton: CRC Press, 2010.
    [9] 贾巍, 范承玉, 王海涛. 一种快速倾斜镜系统的设计与应用[J]. 强激光与粒子束, 2015, 27:051003 doi: 10.3788/HPLPB20152705.51003

    Jia Wei, Fan Chengyu, Wang Haitao. Design and application of fast steering mirror system[J]. High Power Laser and Particle Beams, 2015, 27: 051003 doi: 10.3788/HPLPB20152705.51003
    [10] Rana M S, Pota H R, Petersen I R. A survey of methods used to control piezoelectric tube scanners in high-speed AFM imaging[J]. Asian Journal of Control, 2018, 20(4): 1379-1399. doi: 10.1002/asjc.1728
    [11] 赵彤, 谭永红. 迟滞非线性动态系统神经网络自适应控制[J]. 计算机仿真, 2004, 21(8):104-107

    Zhao Tong, Tan Yonghong. RBFNN-based adaptive control for hysteresis nonlinear dynamic system[J]. Computer Simulation, 2004, 21(8): 104-107
    [12] 崔玉国, 孙宝元, 董维杰, 等. 压电陶瓷执行器迟滞与非线性成因分析[J]. 光学 精密工程, 2003, 11(3):270-275

    Cui Yuguo, Sun Baoyuan, Dong Weijie, et al. Causes for hysteresis and nonlinearity of piezoelectric ceramic actuators[J]. Optics and Precision Engineering, 2003, 11(3): 270-275
    [13] 熊永程, 贾文红, 张丽敏, 等. 基于深度神经网络(DNN)的压电陶瓷前馈补偿研究[J]. 压电与声光, 2022, 44(1):35-41

    Xiong Yongcheng, Jia Wenhong, Zhang Limin, et al. Research on feedforward compensation of piezoelectric ceramics based on deep neural network(DNN)[J]. Piezoelectrics & Acoustooptics, 2022, 44(1): 35-41
    [14] 巩云云, 初瑞清, 徐志军, 等. CaCO3对TiO2系压敏陶瓷性能的影响[J]. 陶瓷学报, 2017, 38(2):212-216

    Gong Yunyun, Chu Ruiqing, Xu Zhijun, et al. Effect of CaCO3 doping on TiO2-based baristor ceramics properties[J]. Journal of Ceramics, 2017, 38(2): 212-216
    [15] 尹慧娟, 徐志军, 初瑞清, 等. La掺杂对0.75PMN-0.25PT压电陶瓷结构及其性能的影响[J]. 硅酸盐通报, 2013, 32(6):1067-1071

    Yi Huijuan, Xu Zhijun, Cu Ruiqing, et al. Effects of La-doping on the structure and electrical properties of 0.75PMN-0.25PT piezoelectric ceramics[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(6): 1067-1071
    [16] 王芳, 卢庆杰, 庄锦程, 等. 基于迟滞非线性补偿系统的光学元件形貌检测[J]. 光子学报, 2020, 49:0612001 doi: 10.3788/gzxb20204906.0612001

    Wang Fang, Lu Qingjie, Zhuang Jincheng, et al. Morphology detection of optical components based on hysteresis nonlinear compensation system[J]. Acta Photonica Sinica, 2020, 49: 0612001 doi: 10.3788/gzxb20204906.0612001
    [17] 张桂林, 张承进, 赵学良. 压电驱动器记忆特性迟滞非线性建模[J]. 光学 精密工程, 2012, 20(5):996-1001 doi: 10.3788/OPE.20122005.0996

    Zhang Guilin, Zhang Chengjin, Zhao Xueliang. Modeling of nonlocal memory hysteresis in piezoelectric actuators[J]. Optics and Precision Engineering, 2012, 20(5): 996-1001 doi: 10.3788/OPE.20122005.0996
    [18] 钟云, 黄楠, 曾俊海. 压电驱动器迟滞非线性的增强型Prandtl-Ishlinskii模型建模及实验验证[J]. 机电工程技术, 2020, 49(10):33-35

    Zhong Yun, Huang Nan, Zeng Junhai. Enhanced Prandtl-Ishlinskii modeling and experimental verification of hysteresis nonlinearities in piezoelectric actuators[J]. Mechanical & Electrical Engineering Technology, 2020, 49(10): 33-35
    [19] Al Janaideh M, Rakheja S, Su Chunyi. An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(4): 734-744. doi: 10.1109/TMECH.2010.2052366
    [20] 罗帅, 王家秋, 张彬. 压电陶瓷驱动器疲劳特性对变形镜校正能力的影响[J]. 中国激光, 2018, 45:0905002 doi: 10.3788/CJL201845.0905002

    Luo Shuai, Wang Jiaqiu, Zhang Bin. Influence of fatigue characteristics of piezoelectric ceramics actuators on correction ability of deformable mirror[J]. Chinese Journal of Lasers, 2018, 45: 0905002 doi: 10.3788/CJL201845.0905002
    [21] 陈彩云. 硬性PZT基压电陶瓷电致疲劳特性及其机理研究[D]. 上海: 中国科学院上海硅酸盐研究所, 2018: 47-81

    Chen Caiyun. The fatigue characteristics and fatigue mechanisms of hard type lead based piezoelectric ceramics[D]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2018: 47-81
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  445
  • HTML全文浏览量:  185
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-23
  • 修回日期:  2023-06-30
  • 录用日期:  2023-06-19
  • 网络出版日期:  2023-07-13
  • 刊出日期:  2023-10-08

目录

    /

    返回文章
    返回