留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲基胺溴化铅晶体粉末的温度依赖光致发光

于海龙 吴文智

于海龙, 吴文智. 甲基胺溴化铅晶体粉末的温度依赖光致发光[J]. 强激光与粒子束, 2023, 35: 119001. doi: 10.11884/HPLPB202335.230103
引用本文: 于海龙, 吴文智. 甲基胺溴化铅晶体粉末的温度依赖光致发光[J]. 强激光与粒子束, 2023, 35: 119001. doi: 10.11884/HPLPB202335.230103
Yu Hailong, Wu Wenzhi. Temperature-dependent photoluminescence of CH3NH3PbBr3 crystal powder[J]. High Power Laser and Particle Beams, 2023, 35: 119001. doi: 10.11884/HPLPB202335.230103
Citation: Yu Hailong, Wu Wenzhi. Temperature-dependent photoluminescence of CH3NH3PbBr3 crystal powder[J]. High Power Laser and Particle Beams, 2023, 35: 119001. doi: 10.11884/HPLPB202335.230103

甲基胺溴化铅晶体粉末的温度依赖光致发光

doi: 10.11884/HPLPB202335.230103
基金项目: 黑龙江省留学归国人员基金项目(LC2017030)
详细信息
    作者简介:

    于海龙,1097913777@qq.com

    通讯作者:

    吴文智,wuwenzhi@hlju.edu.cn

  • 中图分类号: O472+.3

Temperature-dependent photoluminescence of CH3NH3PbBr3 crystal powder

  • 摘要: 采用稳态光致发光(PL)光谱技术,结合光谱学分析方法,对CH3NH3PbBr3(MAPbBr3)晶体粉末的功率密度和温度相关的光物理特性进行了研究。在405 nm连续激光激发下,PL发射峰位在560 nm,半高全宽为123 meV。光谱实验结果表明,通过对功率密度与PL强度进行拟合,其斜率为1.10,这很好地证明了单光子吸收的存在。在80~310 K温度范围内,MAPbBr3晶体粉末的荧光峰位表现出不同的温度依赖行为。随着温度的升高,激子-声子相互作用的增强,峰宽均匀展宽,积分强度逐渐减小。PL发射峰位在80~145 K出现蓝移。在150 K附近PL发射峰出现跳跃,而当温度超过150 K时,光谱的峰位几乎保持不变。这些温度相关的PL行为主要是由于在150 K左右发生了从正交相到四方相的结构相变。此外,从温度相关的PL实验数据拟合得到激子结合能约为49.8 meV和纵向光学声子能量约为60.4 meV。
  • 图  1  形貌、光学及结构表征

    Figure  1.  Morphology, optical and structural characterization

    图  2  功率依赖的稳态光致发光光谱

    Figure  2.  Power-dependent steady-state PL spectra

    图  3  温度依赖的稳态光致发光光谱

    Figure  3.  Temperature-dependent steady-state PL spectra

  • [1] Tan Zhikuang, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite[J]. Nature Nanotechnology, 2014, 9(9): 687-692. doi: 10.1038/nnano.2014.149
    [2] Liu Yucheng, Zhang Yunxia, Zhao Kui, et al. A 1300 mm2 ultrahigh-performance digital imaging assembly using high-quality perovskite single crystals[J]. Advanced Materials, 2018, 30: 1707314. doi: 10.1002/adma.201707314
    [3] Xing Guichuan, Mathews N, Sun Shuangyong, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342(6156): 344-347. doi: 10.1126/science.1243167
    [4] Gao Ge, Xi Qiaoyue, Zhou Hua, et al. Novel inorganic perovskite quantum dots for photocatalysis[J]. Nanoscale, 2017, 9(33): 12032-12038. doi: 10.1039/C7NR04421F
    [5] Li Ying, Shi Zhifeng, Lei Lingzhi, et al. Controllable vapor-phase growth of inorganic perovskite microwire networks for high-efficiency and temperature-stable photodetectors[J]. ACS Photonics, 2018, 5(6): 2524-2532. doi: 10.1021/acsphotonics.8b00348
    [6] Yakunin S, Protesescu L, Krieg F, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites[J]. Nature Communications, 2015, 6: 8056. doi: 10.1038/ncomms9056
    [7] Jang D M, Park K, Kim D H, et al. Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning[J]. Nano Letters, 2015, 15(8): 5191-5199. doi: 10.1021/acs.nanolett.5b01430
    [8] Mojiri A, Taylor R, Thomsen E, et al. Spectral beam splitting for efficient conversion of solar energy—A review[J]. Renewable and Sustainable Energy Reviews, 2013, 28: 654-663. doi: 10.1016/j.rser.2013.08.026
    [9] Kedem N, Brenner T M, Kulbak M, et al. Light-induced increase of electron diffusion length in a p-n junction type CH3NH3PbBr3 perovskite solar cell[J]. The Journal of Physical Chemistry Letters, 2015, 6(13): 2469-2476. doi: 10.1021/acs.jpclett.5b00889
    [10] Kinoshita T, Nonomura K, Jeon N J, et al. Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells[J]. Nature Communications, 2015, 6: 8834. doi: 10.1038/ncomms9834
    [11] Zohar A, Kulbak M, Levine I, et al. What limits the open-circuit voltage of bromide perovskite-based solar cells?[J]. ACS Energy Letters, 2019, 4(1): 1-7. doi: 10.1021/acsenergylett.8b01920
    [12] Wang Qi, Wu Wenzhi. Temperature and excitation wavelength-dependent photoluminescence of CH3NH3PbBr3 crystal[J]. Optics Letters, 2018, 43(20): 4923-4926. doi: 10.1364/OL.43.004923
    [13] Yu Hailong, Wu Wenzhi, Wang Qi, et al. Unusual luminescence and its decay behavior of CH3NH3PbBr3 single crystals at orthorhombic phase[J]. Materials Today Physics, 2022, 22: 100621. doi: 10.1016/j.mtphys.2022.100621
    [14] Zhang Feng, Zhong Haizheng, Chen Cheng, et al. Brightly luminescent and color-tunable colloidal CH3NH3Pb X3 ( X=Br, I, Cl) quantum dots: potential alternatives for display technology[J]. ACS Nano, 2015, 9(4): 4533-4542. doi: 10.1021/acsnano.5b01154
    [15] Siddique Z, Payne J L, Irvine J T S, et al. Effect of halide-mixing on tolerance factor and charge-carrier dynamics in (CH3NH3PbBr3- x Cl x ) perovskites powders[J]. Journal of Materials Science:Materials in Electronics, 2020, 31(21): 19415-19428. doi: 10.1007/s10854-020-04475-4
    [16] Liu Shuo, Jiao Shujie, Lu Hongliang, et al. Cryogenic photoluminescence study on perovskite MAPbBr3 single crystals[J]. ECS Journal of Solid State Science and Technology, 2021, 10: 046003. doi: 10.1149/2162-8777/abf8fd
    [17] Ding Jianxu, Zhao Ying, Du Songjie, et al. Controlled growth of MAPbBr3 single crystal: understanding the growth morphologies of vicinal hillocks on (100) facet to form perfect cubes[J]. Journal of Materials Science, 2017, 52(13): 7907-7916. doi: 10.1007/s10853-017-0995-8
    [18] Rong Shanshan, Xiao Yequan, Jiang Jiexuan, et al. Strongly enhanced photoluminescence and photoconductivity in erbium-doped MAPbBr3 single crystals[J]. The Journal of Physical Chemistry C, 2020, 124(16): 8992-8998. doi: 10.1021/acs.jpcc.0c01959
    [19] Zuo Zhiyuan, Ding Jianxu, Zhao Ying, et al. Enhanced optoelectronic performance on the (110) lattice plane of an MAPbBr3 single crystal[J]. The Journal of Physical Chemistry Letters, 2017, 8(3): 684-689. doi: 10.1021/acs.jpclett.6b02812
    [20] Xie Aozhen, Nguyen T H, Hettiarachchi C, et al. Thermal quenching and dose studies of X-ray luminescence in single crystals of halide perovskites[J]. The Journal of Physical Chemistry C, 2018, 122(28): 16265-16273. doi: 10.1021/acs.jpcc.8b03622
    [21] Savenije T J, Ponseca C S Jr, Kunneman L, et al. Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite[J]. The Journal of Physical Chemistry Letters, 2014, 5(13): 2189-2194. doi: 10.1021/jz500858a
    [22] Wu Ruirui, Wang Qi, Yang Sen, et al. Enhanced thermal stability of exciton recombination in CsPbI3 perovskite nanocrystals via zinc alloying[J]. Journal of Alloys and Compounds, 2021, 857: 157574. doi: 10.1016/j.jallcom.2020.157574
    [23] Hu Qichuan, Yu Hailong, Gong Shunfa, et al. One-dimensional luminescent tetrabutylammonium lead halide perovskite synthesized with deep eutectic solvents[J]. Journal of Materials Chemistry C, 2022, 10(15): 6002-6008. doi: 10.1039/D2TC00382A
    [24] Al Salman A, Tortschanoff A, Mohamed M B, et al. Temperature effects on the spectral properties of colloidal CdSe nanodots, nanorods, and tetrapods[J]. Applied Physics Letters, 2007, 90: 093104. doi: 10.1063/1.2696687
    [25] Wu Lifang, Zhang Minmin, Yang Sen, et al. Spectral and dynamic analysis of CsPbBr3 perovskite nanocrystals with enhanced water stability using sodium passivation[J]. Journal of Alloys and Compounds, 2021, 889: 161721. doi: 10.1016/j.jallcom.2021.161721
  • 加载中
图(3)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  112
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-25
  • 修回日期:  2023-10-17
  • 录用日期:  2023-10-17
  • 网络出版日期:  2023-10-21
  • 刊出日期:  2023-11-11

目录

    /

    返回文章
    返回